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Although quantum tunneling models for luminescence phenomena have
been developed over the last 40 years, interest in these models has been
revived recently in two applied areas: dosimetry/dating applications,
and development of luminescence nanomaterials with many practical
applications. This chapter summarizes luminescence models for random
distributions of electrons and positive ions in solids. Two different
approaches have been developed within the context of these models.
The first approach is a macroscopic point of view which uses differential
equations, and this chapter reviews some of the available analytical
equations in the literature. The second approach uses a microscopic
description based on Monte Carlo simulations, which allow for spatial
correlations between the charges. Monte Carlo methods have not been
used extensively for this type of study. We will review recent work,
and where applicable will compare the solutions of differential equations
with the Monte Carlo simulations. Strengths and weaknesses of the two
approaches will be presented. A third approach which bridges the first
two approaches is also described, in which the differential equations
are solved computationally using a Monte Carlo method. In the final
part of this chapter we present simulations of luminescence phenomena
for nanomaterials, with emphasis on the effect of crystal size on the
experimentally measured luminescence signals.
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2.1. Introduction

This chapter is a review of recent research on quantum tunneling
models associated with luminescence phenomena in solids. More
specifically, the models considered here are applicable to tunneling
phenomena in systems of randomly located defects in a solid. There
have been several efforts during the past 40 years to develop models
for luminescence signals in solids originating in a random distribution
of donor-acceptor pairs, especially in connection with kinetics of
chemical reactions (see for example the book by Chen and Pagonis
[1]; and references therein).

There are two major areas of applied research which provide the
motivation for developing such models.

The first broad applied research area is in luminescence dosimetry
and luminescence dating. From a dosimetry point of view, it is impor-
tant to understand the tunneling mechanisms and the associated
luminescence signals, with a view towards improving dosimetry and
dating techniques. Quantum mechanical tunneling and the associated
phenomena of “anomalous fading” and “long afterglow” of lumines-
cence signals are now well established as dominant mechanisms in
feldspars, apatites, rare earth doped materials and other important
luminescent dosimetric materials (see for example the review paper,
by Pagonis et al. [2]).

The second major experimental thrust for these types of models
is for luminescence nanomaterials which find many practical applica-
tions. Recently luminescent materials consisting of nanoclusters with
only a few atoms have attracted significant attention. The synthesis
and characterization of such nanodosimetric materials has become an
increasingly active research area, and it has been shown that their
physical properties can be different from those of similar conventional
microcrystalline phosphors (see for example Salah [3]; Sun and Sakka
[4]; Eliyahu et al. [5]; and references therein). It has been suggested
that traditional energy band models may not be applicable for
some of these nanodosimetric materials, because of the existence of
strong spatial correlations between traps and recombination centers.
Such spatially correlated systems are also likely to be found in
polycrystalline and low-dimensional structures, as well as in materials
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which underwent high energy/high dose irradiations which create
groups of large defects.

Two possible complementary modeling approaches have been used
in the literature to simulate tunneling in random distributions of
defects: a macroscopic description using differential equations, and
a microscopic description based on Monte Carlo simulations. These
two approaches are discussed in sections 2.2 and 2.3, together with
an alternative third approach, in which the differential equations
are solved computationally by using a different type of Monte Carlo
method. Section 2.4 presents simulations of luminescence phenomena
for nanomaterials, with emphasis on the effect of crystal size on the
experimentally measured luminescence signals.

2.2. The macroscopic differential equation approach

In this section we will consider four different types of tunneling
phenomena, all of which can be described with differential equations.
Section 2.2.1 describes tunneling taking place from the ground
state of the electron trap directly into the recombination center.
Three approximate analytical equations are available in the liter-
ature, which are applicable under different relative concentrations
of electrons and positive ions. Section 2.2.2 extends the work in
section (2.2.1), to include the possibility of simultaneous irradiation
and ground state tunneling of the material. Two analytical equations
are available for such cases, which are applicable under the assump-
tion that the concentration of electrons is much smaller than the
corresponding concentration of positive ions.

Section 2.2.3 reviews extensive modeling work carried out during
the past 10 years, which is based on tunneling taking place from
the excited state of the electron trap. Several analytical equations
are reviewed, which are again based on the assumption of the
concentration of electrons being much smaller than the concentration
of positive ions.

Figure 1 shows three previously proposed relatively simple models
for luminescence signals in feldspars. Figure 1a and 1b show two
ground state tunneling models considered by Tachiya and Mozumder
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Fig. 1. Schematic depiction of the three luminescence models considered in this
paper: (a) The ground state tunneling model. (b) The more general ground state
tunneling model, in which anomalous fading and natural irradiation are taking
place simultaneously. (c) The excited state tunneling model. (After Pagonis and
Kitis [12]).

[6] and by Li and Li [7] respectively. Figure 1c shows an excited state
tunneling model considered by Avouris and Morgan [8], Thioulouse
and Chang [9], Jain et al. [10] and Kitis and Pagonis [11].

2.2.1. Ground state tunneling models

Several authors discussed the tunneling mechanism for a random
distribution of donors and acceptors in a luminescent material, based
on recombination taking place directly from the ground state of the
system into the recombination center. The recombination of trapped
charge is assumed to take place by quantum mechanical tunneling
with a lifetime τFADING given by:

τFADING = (1/s) exp[αr] (1)

where α (m−1) is the potential barrier penetration constant, r(m)
is the separation distance between donor and acceptor and s (s−1)
is the attempt-to-tunnel frequency. The instantaneous concentration
n(r, t) of trapped electrons in the ground state depends on both the
elapsed time t and on the separation distance r between donor and
acceptor.
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We will now consider three different cases, depending on the
relative concentration of electrons/donors (no) and acceptors (mo).

We first consider the situation where the concentration of elec-
trons is much smaller than the concentration of acceptors, so that
the system can be characterized by a constant number density of
acceptors per unit volume ρ (m−3). In such cases one can define a
dimensionless distance parameter r′, such that:

r′ = (4πρ/3)1/3r (2)

In addition one defines a constant dimensionless parameter ρ′

proportional to ρ, by:

ρ′ = (4πρ/3)α−3 (3)

In order to maintain charge neutrality in this system of constant ρ,
it is assumed that there is a large number of additional filled electron
traps in the system, which do not participate in the tunneling process.
This is a common situation in many dosimetric materials, in which
several different types of electron traps are present. A second common
assumption made in these tunneling models is that tunneling takes
place only to the nearest neighbor in the system; this is known as
the nearest neighbor approximation, and has been shown to be a
reasonable approximation in most situations, except at very high
charge densities. It can be shown from geometrical arguments that
the nearest neighbor distribution of distances between electrons and
acceptors is given by the following normalized distribution:

gNN (r) = 4πρr2 exp[−(4π/3)ρr3] (4)

In terms of the radius r′ this equation becomes dimensionless:

gNN (r′) = 3(r′)2 exp[−(r′)3] (5)

As the tunneling process proceeds over time, the distribution of
electrons in the ground state n(r′, t) varies with the distance
parameter r′ and with time t according to:

n(r′, t) = 3no(r′)2 exp[−(r′)3] exp[−st exp(−(ρ′)−1/3r′)] (6)

where no is the total initial number of donors in the system.
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Figure 2a shows a plot of Eq. (6) at a time t = 1000 s after the
start of the tunneling process (dashed line). The solid line in Fig. 2a
indicates the initial peak-shaped symmetric distribution gNN (r′)
obtained using Eq. (5), and the values of the parameters used in this
simulation are typical for feldspars, ρ′ = 3 × 10−6, s = 3 × 1015 s−1.
The dashed line in Fig. 2a represents the “moving tunneling front” in
the tunneling process. The characteristic shape of this tunneling front
is the product of the two functions appearing in Eq. (6), namely of the
sharply rising double exponential function exp[−st exp[−(ρ′)−1/3r′],
and of the symmetric distribution gNN (r′).

The instantaneous total concentration of remaining carriers n(t)
is calculated by integrating Eq. (6) over all possible distances r′:

n(t) = no

∫ ∞

0
3(r′)2 exp[−(r′)3] exp[−t/τ ]dr′ (7)

In the approximate semi-analytical version of the model, one intro-
duces a critical lifetime τc and a corresponding critical radius r′c,
which describe the behavior of the physical system. Geometrically,
this approximation corresponds to replacing the dashed lines in
Fig. 2a by a vertical line at r′ = r′c. Mathematically the value of
the critical distance can be estimated from the inflection point of
the double exponential function in Eq. (6) ([10, 12, 13]), and is
given by:

r′c = (ρ′)1/3 ln(st). (8)

Using this approximation we can now evaluate the integral in Eq. (7),
by replacing the exponential exp(−t/τ) with a value of 0 for t < τ ,
and with a value of 1 for t > τ . By carrying out the integration we
obtain the electron survival probability S(t):

S(t) = n(t)/no = exp[−ρ′ ln(st)3] (9)

A more accurate numerical approximation is obtained at all values
of st by using the following slightly modified version of Eq. (9) (Kitis
and Pagonis [11]):

S(t) = n(t)/no = exp[−1.8ρ′ ln(st)3] (10)
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Fig. 2. (a) An example of the distribution of distances obtained using Eq. (6)
as a function of the dimensionless distance r′, and at a two times t =
0 s (solid line), and at t = 1000 s after the start of the tunneling process
(dashed line). The critical radius corresponds to the approximation of replac-
ing the dashed line by a vertical line. (b) Comparison of the concentration
n(t) obtained by numerically integrating Eq. (7) over the possible range of
values of distances, with the analytical expressions in Eq. (10). (After Pagonis
et al. [13]).
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Figure 2b shows a comparison of the concentration n(t) obtained
by numerically integrating Eq. (7) over the possible range of values
of distances r′, with the analytical expressions in Eq. (10), showing
good agreement between the two approaches.

In summary, Eq. (7) is derived by assuming (a) a random
distribution of defects (b) nearest neighbor interaction and (c) that
the concentration of electrons is much smaller than the concentration
of acceptors. Furthermore, Eq. (10) provides a good analytical
approximation of Eq. (7).

Pagonis et al. [14] developed the following new analytical equation
for the electron survival probability S(t) for a random distribution
of electrons and positive ions. This equation is derived on the
assumption of equal initial concentrations no = mo of donors and
acceptors correspondingly:

P (t) = 1/{1 + (4π/3)noa
3[ln(st)]3} (11)

Where a = 1/α (m−1) is the tunneling length parameter, s (s−1) is
the tunneling frequency, and no, mo are the initial equal concentra-
tions of donors/acceptors at time t = 0.

Pagonis et al. [15] also considered cases of unequal initial concen-
trations of electrons and positive ions. They derived the following
analytical equation for the electron survival probability:

P (t) = 1/{−[no/Δm] + [mo/Δm] exp[(4π/3)Δm a3[ln(st)]3} (12)

Figure 3a shows graphs of Eq. (11) for different values of the
dimensionless parameter n′

o = noa
3. Figure 3b shows graphs of

Eq. (12) for different relative concentrations no/mo and for no < mo.
In the limiting case where no � mo, Eq. (12) becomes the same as
Eq. (9) with ρ′ = 4πmoa

3/3.

2.2.2. Irradiation and ground state tunneling

Huntley and Lian [16] suggested an extension of the model in Fig. 1a,
which uses a differential equation to describe simultaneous natural
irradiation and anomalous fading effects on the luminescence of
feldspars. Li and Li [7] applied the model of Huntley and Lian [16]
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Fig. 3. (a) Plots of Eq. (11) for different values of the dimensionless parameter
n′

o = noa
3. (b) Plots of Eq. (12) for different relative concentrations no/mo and

for no < mo. (After Pagonis et al. [14]).

in an extensive experimental and modeling study of both laboratory-
irradiated and naturally irradiated feldspars. These authors studied
the decay of IRSL signals, the effects of anomalous fading on the
shape of dose response curves (DRCs), the probability distribution
of trap-to-center distance and the dependence of anomalous fading
on the parameters of the model. They reported that the fading rates
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depend strongly on the radiation dose previously received by the
samples.

Li and Li [7] developed a single differential equation, whose
solution for a constant distance r′, is given by:

n(r′)
N(r′)

=
DRτ(r′)

DRτ + Do

(
1 − exp

[
−DRτ(r′) + Do

Doτ
t

])
(13)

where DR is the natural irradiation dose rate, Do is the characteristic
unfaded dose, n(r′) and N(r′) are the instantaneous and maximum
possible concentrations of carriers corresponding to a given distance
r′, and the tunneling lifetime τ(r′) is found from Eq. (1) as before.
Using t = Dn/DR where Dn is the paleodose and by defining an
effective characteristic dose D′

o(r
′):

D′
0(r

′) =
DRτ(r′)Do

DRτ + Do
(14)

Eq. (13) becomes:

n(r′)
N(r′)

=
D′

0

Do

(
1 − exp

[
−Dn

D′
0

])
(15)

This is the saturating exponential function derived by Li and Li [7],
which expresses how n(r′) fills up with the paleodose Dn = DRt.
Both the lifetime τ(r′) and the effective characteristic dose constant
D′

o (r′) depend on the distance r′. As time progresses, the probability
distribution of distances r′ for the system changes with the paleodose
Dn according to the equation:

Pn(r′) =
P (r′)n(r′)

N(r′)
= 3(r′)2 exp(−(r′)3)

D′
0

Do

(
1 − e

−Dn
D′

0

)
(16)

where P (r′) = 3(r′)2 exp(−(r′)3 is the unfaded nearest neighbor
probability distribution function.

Figure 4a shows an example of the probability distribution
function (PDF) Pn (r′) from Eq. (16), with the numerical values
ρ′ = 3 × 10−6, s = 3 × 1015 s−1, Dn = 500 Gy, DR = 3 Gy ka−1 and
Do = 538 Gy. The solid curve in Fig. 4a represents the symmetric
unfaded PDF, and the dashed curve represents the faded distribution
Pn (r′). Physically this Pn (r′) function represents a “tunneling front”
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Fig. 4. (a) An example of the probability distribution Pn(r′) from Eq. (16). The
solid line represents the symmetric unfaded PDF, and the dashed line represents
the faded distribution Pn(r′), similar to the tunneling front shown in Fig. 2a for
ground state tunneling. (b) Comparison of the DRC analytical Eq. (20) with the
results obtained by the numerical integration of equations in the model. (After
Pagonis and Kitis [12]).

which is mathematically similar to the front shown in Fig. 2a for
ground state tunneling.

The modeling results of Li and Li [7] were expressed in terms
of integral equations which require numerical integration over the
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donor-acceptor distances in the model. Pagonis and Kitis [12] showed
that the integral equations for DRCs in the model of Li and
Li [7] can be replaced with analytical equations. These authors
demonstrated the mathematical similarities between the two ground
state tunneling models shown in Fig. 1ab, and introduced a critical
radius approximation:

r′c = (ρ′)1/3 ln
(

Dos

DR

)
(17)

Using this value of the critical radius, one can now numerically
evaluate the integrals in the work of Li and Li [7], to obtain this
equation for the faded luminescence signal as a function of the natural
dose Dn:

Ln(Dn) =
(

1 − exp
[
−Dn

D0

])
M exp

{
−ρ′ ln

[
Dos

DR

]3
}

(18)

This is the desired analytical expression for the luminescence Ln

as a function the natural dose Dn. For the unfaded signal, the
corresponding expression is:

Lunfaded = M

{
1 − exp

[
−Dn

D0

]}
(19)

Eqs. (18) and (19) are the important analytical equations for the
faded and unfaded signals Ln and Lunfaded and both equations
are simple saturating exponentials of the natural dose Dn. The
saturation level reached by the unfaded signal is equal to the
total number of traps M , and the saturation level reached by the
faded signal is equal to the second exponential term in Eq. (18).
The ratio of the faded over the unfaded signal is then equal to
k = exp(−ρ′ ln[(Dos)/DR]3) and depends on the parameters ρ′, s,
DR and Do in the model. By using the previously stated values of
these parameters, we obtain the fading ratio k = 0.438 = 43.8%
of the original signal remaining in the sample, in agreement with
experimental data.

Experimentally one usually measures a sensitivity corrected sig-
nal, by using the response of the material to a test dose. For a small
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test dose of Dtest the sensitivity corrected signal L/T is given by the
analytical expression:

Ln

Tn
=

(
1 − exp

{
−Dn

D0

})
exp

{
−ρ′ ln

[
Dos
Ḋ

]3
}

(
1 − exp

{
−Dtest

D0

}) (20)

Figure 4b compares the results from the DRC analytical Eq. (20)
with the corresponding results obtained by the numerical integration
of the equation in the model of Li and Li [7]. Very good agreement
is seen at all values of the natural dose Dn.

Guralnik et al. [18] used a different approach based on a general-
order kinetics model, to describe both the DRC’s and the isothermal
process in feldspars. They compared their model with experimental
data for different materials by using a minimum of model parameters.
These authors also compared their model with experimental data
from a multi-elevated temperature post-IR IRSL (MET-pIRIR)
dataset.

The empirical equation used by Guralnik et al. [18] to fit the
DRCs is:

f(D) = a[1 − (1 + bcD)(−1/c)] + d (21)

where D is the dose and a, b, c, d are constants.

2.2.3. Excited state tunneling

Early modeling work was carried out by Avouris and Morgan [8]
and Thioulouse et al. [9]. Jain et al. [10] presented a mathematical
description of the model in Fig. 1c. The main assumptions of the
model are the presence of a random distribution of electron-hole
pairs, in which the concentration of holes (acceptors) is much larger
than the concentration of electrons (donors). Thermal or optical
excitation raises the electrons from the ground into the excited
state of the system. Tunneling takes place from the excited state of
the electron trap into the recombination center, and to the nearest
neighbors only. Kitis and Pagonis [11] quantified the semi-analytical
model of Jain et al. [10] by deriving analytical expressions for
different experimental stimulation modes.
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In additional work Pagonis et al. [13] examined the exact version
of the model by Jain et al. [10] and showed that these equations for
excited state tunneling are a direct generalization of the equations
previously derived by Tachiya and Mozumder [6] for the case of
ground state tunneling. These authors showed that the system of
equations in Jain et al. [10] can be replaced with the following single
differential equation:

dn(r′, t)
dt

= − Astun

B exp[(ρ′)−1/3r′]
n(r′, t) (22)

where n(r′, t) represents the concentration of electrons in the ground
state, and no is the total initial number of donors in the system,
as in the previous sections. In addition, A is the rate of excitation
of the electron from the ground into its excited state, B is the
transition rate from the excited into the ground state, and stun is the
frequency factor characterizing the tunneling process taking place
from the excited state of the system. In previous modeling work
by Jain et al. [10] and Kitis and Pagonis [11], it was assumed for
simplicity in the model that stun = B, which led to a simplified
form of Eq. (22). However, from a physical point of view, there is no
relationship between the two parameters stun and B, so one should
not assume that they are equal.

The total remaining number of electrons in the ground state at
time t is given by:

n(t) =
∫ ∞

0
3n0(r′)2 exp[−(r′)3] exp

[
− stun

B exp[(ρ′)−1/3r′]

∫ t

0
Adt′

]
dr′

(23)

Eq. (23) allows a numerical calculation of n(t), by numerical
integration.

The value of the parameter A in the above equation depends
on the stimulation mode used in the experiments. In the case of
continuous wave infrared stimulated (CW-IRSL) experiments, the
parameter A represents the constant rate of infrared excitation AIR,
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and the integral in this equation can be replaced by AIRt, where
t is the time elapsed from the beginning of the IR-excitation. In an
isothermal decay experiment, the temperature TISOTH of the sample
is kept constant and the parameter A is replaced by the constant rate
of thermal excitation AISOTH = sth exp(−E/kBTISOTH), where E

is the thermal activation energy and sth is the pre-exponential factor
for the thermal excitation process, which is proportional to the lattice
vibration frequency. In this case the integral can be replaced by
AISOTHt, where t is the elapsed time from the isothermal experiment.
In a TL experiment, the sample is heated with a linear heating rate
β, from a starting temperature To up to a high temperature around
500◦C. In this case parameter A is replaced by time-dependent
probability of thermal excitation ATL = sth exp[−E/kT (t)] where
k is the Boltzmann constant and the integral can be approximated
to any desired degree of accuracy by using the exponential integral
function Ei(T ) (Chen and Pagonis [1]). During linearly modulated
IRSL (LM-IRSL) experiments, the probability of optical excitation
is varied linearly with time in the form A = bt/T , where T = total
excitation period and b is an experimental constant. The integral
can now be replaced by bt2/2T , where t is the time elapsed in the
LM-IRSL excitation.

The analytical solution of Eq. (23) for excited state tunneling was
developed by Kitis and Pagonis [11]:

n(t) = no exp[−ρ′F (t)3] (24)

F (t) = ln
(

1 + 1.8
∫ t

0
Adt′

)
(25)

L(t) = −dn

dt
=

AF (t)2 exp[−ρ′[F (t)]3]

1 + 1.8
∫ t
0 Adt′

(26)

Where L(t) represent the luminescence intensity observed during
these different types of experiments. Figure 5 shows examples of
2 different types of experimental data, which was analyzed using
Eqs. (24)–(26).
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Fig. 5. (a) LM-OSL data (b) TL data analyzed using Eqs. (24)–(26) in the text
(After Kitis and Pagonis [11]).

2.3. The microscopic Monte Carlo approach

The Monte Carlo simulations can provide valuable insight into the
various factors which affect the luminescence mechanism in these
materials. The advantages of using a Monte Carlo method, as
opposed to the differential approach, are (Pagonis and Kulp, [18]):

• Monte Carlo methods are fast, efficient and avoid numerical
integrations required in the differential equation approach.
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• MC methods can be used to produce accurate results in cases of
low stimulation probability, in which it is known that the analytical
equations of Kitis and Pagonis [11] fail.

• They can be used for both freshly irradiated samples, and for irra-
diated samples which underwent thermal or optical pre-treatments.

• They can also be used to describe time-resolved experiments based
on Mott hopping processes.

Section 2.3.1 summarizes earlier Monte Carlo work on lumines-
cence clusters, and reviews the recent work by Pagonis et al. [19]
which is based on the general one trap (GOT) model. Sections 2.3.2
describes the recent work by Pagonis and Kulp [17], who simulated
the loss of charge due to ground state tunneling, as well as the charge
creation by natural irradiation of the samples.

Section 2.3.3 considers the simultaneous processes of irradiation
and charge loss due to ground state tunneling, and compares the
Monte Carlo simulations with analytical expressions in the literature.
Section 2.3.4 presents a hybrid Monte Carlo method, which is based
on the solution of differential equations for a finite number of charge
carriers in a solid.

2.3.1. Monte Carlo under QE conditions

Early Monte-Carlo methods for the study of thermoluminescence
(TL) were presented in the papers by Kulkarni [20], Mandowski
[21–23] and Mandowski and Świ tek ([24–27]). These authors sug-
gested that usually the number of carriers in a sample is large and
the differential equations used in traditional kinetic models describe
the system properly. However, in some solids one must consider
clusters of traps as separate systems, since the continuous differential
equations are not valid. Typically the Monte Carlo calculations are
performed with the total population of carriers simultaneously, and
in each step of the Monte-Carlo simulation one finds the lowest
transition time for all possible transitions, and this is the only
transition which is executed. These studies of TL showed that spa-
tially correlated effects become prominent for low concentrations of
thermally disconnected traps and for high recombination situations.
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In additional Monte Carlo applications in luminescence, Pagonis
and Kitis [28] studied several popular luminescence models using
random combinations of variables, while Pagonis et al. [29] applied
the same technique in simulating several dating protocols for quartz.
Adamiec et al. ([30, 31]) used a method of random variation of kinetic
parameters to develop a genetic algorithm for luminescence models.

The above mentioned studies have focused on the properties of
TL glow curves using Monte Carlo simulations. Pagonis et al. [19]
used a simple technique based on the general one trap (GOT) model
of luminescence, and obtained physical insight into the nature of the
simulated multi-peak TL and linearly modulated OSL signals (LM-
OSL), by varying the parameters in the model. The physical picture
in the simple model of these authors is that the system consists
of many independent clusters of electron-hole pairs. Electrons are
released from the traps and into the conduction band by either ther-
mal or optical stimulation. Subsequently they are either recombined
radiatively or are retrapped, with both retrapping and recombination
taking place within the same cluster. The simplified model is based
on the differential equation:

ITL(t) = −dn

dt
=

n2p(t)
(N − n)r + n

(27)

where N (cm−3) is the total concentration of dosimetric traps,
n(cm−3) is the concentration of filled dosimetric traps. r is the
ratio of the capture coefficients An and Am (cm3s−1) of the trap
and recombination center respectively, and p(t) is the experimental
rate of excitation of the electrons in the trap. In the case of TL,
the rate of thermal excitation is p(T ) = s exp(−E/kT ) where E

(eV) and s (s−1) represent the thermal activation energy and the
frequency factor of the dosimetric trap, correspondingly, T is the
absolute temperature and k the Boltzmann constant. The initial
concentrations of filled traps at time t = 0 are denoted by the symbol
n0, and a linear heating rate is assumed during the TL experiment.
In the case of continuous-wave OSL signals (CW-OSL), p(t) = λ(s−1)
is the constant rate for optical excitation and in the case of LM-OSL
experiments, p(t) = bt, where b is a parameter which depends on
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the experimental conditions and on the optical cross section for the
traps under consideration. In the “brute force” Monte Carlo method
presented by Pagonis et al. [19], this becomes a difference equation
for the discrete variable n:

Δn = − n2p(t)
(N − n)r + n

Δt (28)

The dimensionless time-dependent probability P for an electron to
recombine within a time interval Δt is P = p(t)Dt, and a suitable
value of Δt is chosen so that P � 1. A random number r uniformly
distributed in the unit interval 0 ≤ r < 1 is generated; if r ≤ P the
recombination takes place, otherwise it does not. The value of the
remaining electrons n is updated at the end of each time interval
Δt, and the process is continued until there are no electrons left.
These authors used local variables to describe the internal structure
of each cluster, and global variables which describe the whole group
of clusters. A double iterative loop is used, with the inner loop
simulating a single cluster using local variables, and with the outer
loop simulating the whole group of clusters using global variables.
A third iterative loop advances the time t by increments of Δt,
simulating the thermal/optical stimulation of the system.

Figure 6a shows a typical simulated system of small trap clusters,
in which there are 4 traps in each cluster (shown as both open
and solid circles), with only 3 of them being initially filled (shown
as solid circles). One ensures the charge balance in the system,
by assuming the existence of an equal number of 4 luminescence
centers (shown as both open and solid stars), 3 of which have
been activated (shown as solid stars). Figure 6b shows the results
of a Monte Carlo simulation for the TL signal, with the kinetic
parameters s = 1010 s−1, E = 0.9 eV, a linear heating rate 1K/s and
the retrapping ratio r = An/Am = 103. The system consists of two
initially filled traps per cluster, and a large number of no = 2 × 105

initially filled traps. The TL glow curve in Fig. 6b consists of 2 peaks;
this is consistent with the work of Mandowski and Świ tek [26], who
showed that the number of constituent TL peaks should be equal to
the number of filled traps per cluster.
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Fig. 6. (a) The model of Pagonis et al. [19] based on the GOT model (b)
Simulated TL glow curve based on the model shown in (a).

Pagonis and Chen [32] applied the same simple Monte Carlo
method to the semi-analytical version of the model by Jain et al.
[10], in which the system of simultaneous differential equations can
be approximated to a very good precision by the difference equation.

Δn = −3ρ′1/3Az exp

[(
1
ρ′

ln
nfilled

n

)1/3
](

ln
nfilled

n

)2/3
nΔt

(29)

where z = 1.8, nfilled is the local parameter for the initially filled
traps in the cluster, and the rest of the parameters were defined
previously.
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Fig. 7. (a) Simulation of TL glow curve (b) Simulation of LM-OSL curve (from
Pagonis and Chen [32]).

Figures 7a and 7b show typical results from Eq. (29), for a
simulated TL and LM-OSL experiment correspondingly.

2.3.2. Monte Carlo simulations of ground state

tunneling

Larsen et al. [33] presented a numerical Monte Carlo model that
simulated the processes of charge loss, charge creation and charge
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recombination in feldspar. Their main assumptions were that the
number density of electrons and holes are equal at all times, and that
nearest neighbor interactions take place. The focus of their study
was to reproduce the experimentally observed values of the well-
known g-factor describing anomalous fading effects. These authors
were not able to get reliable results for bulk crystals, and obtained
good agreement with experiment only when they assumed that the
material consisted of small nanocrystals, and that charge carriers
were allowed to recombine only within these smaller volumes.

Pagonis and Kulp [17] presented a different version of the model
by Larsen et al. [33], in which the number density of acceptors far
exceeds that of donors. The new version of the model was used
to simulate the loss of charge due to ground state tunneling, as
well as the charge creation by natural irradiation of the samples.
The results from the model compared well with the analytical
equations (24–26) presented in the previous subsection. The sim-
ulations can describe the loss of charge on a wide variety of time
scales, from microseconds to thousands of years. The effect of
crystal size, charge carrier density, natural irradiation dose rate
and total number of charge carriers were studied in a quantitative
manner.

Figure 8 shows typical simulation results obtain by Pagonis and
Kulp [17]. During the simulation each of the electrons in the volume
is examined, and the distances of this electron from all holes are
calculated. The minimum distance rMIN to the nearest neighbor is
found, and the Monte Carlo algorithm generates i = 1 . . . nDONORS

possible random fading times tiFADING given by:

tiFADING = −s−1 exp(α rMIN ) ln(1 − Pi) (30)

where Pi is a random number between 0 and 1, representing the
probability of recombination for each surviving electron. These
possible times tiFADING depend on the tunneling frequency s, on
the barrier penetration parameter α, and on the instantaneous
distribution of distances rMIN in the system. Close-by pairs are
more likely to recombine first, and further away pairs are likely to
recombine later. Only the event corresponding to the shortest of all
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Fig. 8. (a) A cube containing random distributions of electrons and positive ions
(b) Monte Carlo simulation of the charge loss in the distribution shown in (a)
(After Pagonis and Kulp [17]).

the possible times in Eq. (30) happens, i.e. the donor-acceptor pair
corresponding to this shortest time is allowed to recombine. After
this pair is removed from the system in the simulation, the distances
between each donor and each acceptor are re-evaluated, and the
minimum tiFADING time is used to update the total time elapsed from
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the beginning of the simulation. This process is repeated until there
are no more donors left in the system.

The Monte Carlo simulations average the results from 500 such
random cubes of the same size shown in Fig. 8a, with typical
results shown in Fig. 8b. The parameters used for the simulation
in Fig. 8 are ρ′ = 10−5, s = 3 × 1015 s−1, nDONORS = 100 and
nACCEPTORS = 1222, the potential barrier penetration constant
α = 4×109 m−1 and the size of the cube d = 200 nm. The solid line in
Fig. 8b represents the analytical Eq. (10) for the loss of charge due to
ground state tunneling. Very good agreement is obtained between the
analytical equation and the results of the Monte Carlo simulation.
Finally, Pagonis and Kulp [17] extended their version of the model
to describe luminescence signals originating in the nearest neighbor
hopping mechanism in feldspars, and compared with experimental
data from time-resolved infrared stimulated luminescence (TR-IRSL)
in these materials.

2.3.3. Monte Carlo simulations of simultaneous

irradiation and tunneling

Pagonis and Kulp [17] simulated the simultaneous processes of
charge loss by tunneling, and charge creation by irradiation in
nature, and compared the results of the Monte Carlo simulations
with previously derived analytical equations. The simulations were
compared with analytical expressions over a wide variety of time
scales, from microseconds to thousands of years. These authors
were able to produce quantitative agreement of the Monte Carlo
model with experimental data for both bulk and nano-sized crystals.
They studied quantitatively the influence of various parameters in
the model, such as the crystal size, charge carrier density, natural
irradiation dose rate and total number of charge carriers.

Figure 9a shows the results of the acceptor density on the loss
of charge due to tunneling. Figure 9b shows the dose response of
a feldspar sample under the simultaneous effect of tunneling and
natural irradiation. The solid line represents the analytical Eq. (18)
derived by Pagonis and Kitis [12].
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Fig. 9. (a) Effect of density on the loss of charge by tunneling (b) dose response
under simultaneous irradiation and tunneling (After Pagonis and Kitis [12]).

2.3.4. Monte Carlo simulations of tunneling from the

excited state

In this section we present a different Monte Carlo technique which
can be used to study tunneling from the excited state of a trap,
as shown schematically in Fig. 1c. This alternative computational
approach has the advantage that it can be applied to any of the
different situations presented in sections 2.2 and 2.3. Furthermore,
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this method can be used for both freshly irradiated samples, and
for irradiated samples which underwent thermal or optical pre-
treatments before measurement of their luminescence signal.

The method is based on Eq. (22), which is written as a difference
equation for the discrete variable n(r′, t) characterizing the number
of electrons in the material:

Δn(r′, t) = − Astun

B exp[(ρ′)−1/3r′]
n(r′, t)Δt. (31)

The total number n(t) of remaining electrons at time t, and the
luminescence intensity I(t) are evaluated from the finite sums:

n(t) =
2∑

r′=0

n(r′, t)Δr′ (32)

L(t) = −
2∑

r′=0

Δn(r′, t)
Δt

Δr′. (33)

For pretreated samples one can approximate the nearest neighbor
distribution with a truncated distribution function which extends
from a minimum critical radius r′c up to infinity (Pagonis et al.
[13]; Jain et al. [34]). This critical radius can be treated as an
adjustable modeling parameter when fitting experimental data. For
such samples the summations in Eqs. (32)–(33) start at r = r′c,
instead of starting at r′ = 0. In these equations Δr′ is an appropriate
distance interval, e.g. Δr′ = 0.02. The overall evolution of the system
must be followed for both the time variable t, and for each value
of the dimensionless distance r′, by using two iterative loops. The
inner loop is executed using a time variable t, and for a constant
value of the distance parameter r′. The outer loop repeats the inside
loop for all possible discrete values of the parameter r′ = r′ + Δr′.
At time t = 0 there are no filled traps, and the distribution of
nearest neighbors is given by the peak shaped function. The rate
P for an electron to recombine radiatively within the time interval
Δt and for certain distance r′ is given by the function on the right
hand side of Eq. (31). By following the same method as in Pagonis
et al. [19], and Pagonis and Chen [32], one chooses a suitable value
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of Δt so that PΔt � 1, and a random number r is generated,
which is uniformly distributed in the unit interval 0 ≤ r < 1. If
r ≤ P the electron recombines radiatively, otherwise it does not;
all non-recombined remaining electrons in the system are tested
in this manner during each time interval Δt, and at the end of
each time interval Δt, the program stores the values of n(r′, t) and
Δn(r′, t)/Δt. This process is now repeated for the next value of the
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Fig. 10. (a) Comparison of model with experimental TL glow curves of irradiated
sample preheated at different temperatures (b) Same as (a), for a sample
preheated at different times for a fixed preheating temperature (After Polymeris
et al. [35]).
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distance r′ in the outer software loop. Finally the contributions from
all distances r′ are added according to Eqs. (32) and (33), resulting in
the simultaneous evaluation of the discrete-value functions n(t) and
L(t). Both iterative loops are executed until there are no particles
left in the system. Figure 10 shows how the results of this method
compare with experimental data.

2.4. Monte Carlo simulations of luminescence
phenomena in nanodosimetric materials:
ground state tunneling

In this section we present simulations of luminescence phenomena for
nanomaterials based on ground state tunneling, with emphasis on the
effect of crystal size on the experimentally measured luminescence
signals.

Pagonis et al. [15] simulated the effect of crystal size on quantum
tunneling phenomena in nanocrystals, based on the assumption of
a random distribution of electrons and positive ions. They found
a rather complex behavior of such random distributions, which is
determined by three characteristic lengths: the radius of the crystal
R, the tunneling length a, and the initial average distance 〈d〉
between electrons and positive ions (which is directly related to
the density of charges in the material). Two different cases were
examined, depending on the relative concentrations of electrons and
ions. In the first case described in section 2.4.1, the concentration
of electrons was assumed to be much smaller than the concentration
of positive ions, and an analytical equation is available to describe
the effect of varying crystal size. In the second situation presented in
section 2.4.2, the concentrations of electrons and positive ions were
equal at all times, and no analytical equation is available to describe
the process. As a consequence, crystal size effects in this situation
must be simulated using Monte Carlo techniques.

2.4.1. Case #1: Concentration of electrons much

smaller than concentration of positive ions

When the concentration of positive ions ρ far exceeds the con-
centration of electrons in the system, then ρ can be considered
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to stay almost constant during the tunneling process. Tachiya
and Mozumder [6] developed the following analytical equation to
describe the electron survival probability P (t) in a spherical random
distribution of electrons and positive ions with radius R:

P (t) =
[

1
(4/3πR3)

∫ R

0
exp

[ −t

τFADING(r)

]
4πr2dr

]ρ(4/3πR3)

, (34)

where the lifetime τFADING is given by Eq. (1). It is noted that
Eq. (34) has been available for more than 40 years in the literature,
but was used only recently to describe crystal size effects on tunneling
phenomena.

In the limit of bulk large crystals R → ∞, Tachiya and Mozumder
[6] showed that Eq. (34) has the following analytical expression:

P (t) = exp
[
−ρ

(
4
3
πa3

)
g(st)

]
, (35a)

g(st) = ln(st)3 + 1.7316 ln(st)2 + 5.9343 ln(st) + 5.4449. (35b)

Pagonis et al. [15] studied the behavior of Eq. (34) as a function
of the radius R, and with a constant density of positive ions ρ,
and found two opposite behaviors as a function of the crystal size.
When the tunneling length a is much smaller than both R and 〈d〉,
the analytical equations show that smaller crystals exhibit a faster
tunneling recombination rate, as shown in Fig. 11a.

However, when the tunneling length a is of the same order
of magnitude as both R and 〈d〉, the opposite effect is observed
in Fig. 11b, with smaller crystals exhibiting a slower tunneling
recombination rate. As the crystal size increases, the rate of tunneling
in both cases reaches the limit expected for bulk materials, given by
Eq. (35).

In the second situation presented in section 2.4.2, the concen-
trations of electrons and positive ions were equal at all times, and
no analytical equation is available to describe the process. As a
consequence, crystal size effects in this situation must be simulated
using Monte Carlo techniques.
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Fig. 11. (a) The results of integrating Eq. (34) numerically for a positive ion
density ρ = 5 × 1022 m−3, tunneling length a = 2nm, and for crystal sizes R =
10− 25 nm. The dashed line shows the limit described by the analytical equation
(24). (b) Same as (a), for a longer tunneling length a = 10 nm, and for a radius
in the range R = 15–30 nm. (After Pagonis et al. [15]).

2.4.2. Case #2: Equal concentrations of electrons

and positive ions at all times

Pagonis et al. [15] discussed the situation when the concentrations of
electrons and positive ions are equal at all times. In this case crystal
size effects must be simulated using Monte Carlo techniques. These
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Fig. 12. (a) The results of Monte Carlo simulations of a spherical distribution,
for an initial positive ion density ρ = 1023 m−3, tunneling length a = 1nm, and
for crystal sizes R = 50 − 120 nm. (b) Same as (a), for a longer tunneling length
a = 10 nm. (After Pagonis et al. [15]).

authors employed the Monte Carlo method described in Pagonis and
Kulp [17], and examples of the results of their simulations are shown
in Fig. 12.

The Monte Carlo simulations of Figs. 12ab show the same effect
of crystal size on the tunneling rate as the results of the analytical
Eq. (34) shown in Fig. 11.
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Pagonis et al. [15] also studied the effect of sample temperature,
by extending the Monte Carlo simulations to include thermal char-
acteristics of the defects. By following the suggestion by Larsen et al.
[33], these authors included the thermal time constant τTHERMAL =
(1/s) exp(E/kT ), which is assumed to be constant and the same for
all traps. This Arrhenius-type thermal time constant τTHERMAL is
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Fig. 13. (a) The results of Monte Carlo simulations of a spherical distribution,
for an initial positive ion density ρ = 1023 m−3, tunneling length a = 1nm, and
for crystal sizes R = 50–120 nm. (b) Same as (a), for a longer tunneling length
a = 10 nm. (After Pagonis et al. [15]).
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characterized by the thermal activation energy E and the thermal
frequency factor s, k is the Boltzmann constant and T is the
temperature of the sample.

The results of the simulations are shown in Fig. 13 with the
parameters E = 1eV, s = 1012 s−1, initial charge density ρo = 5 ×
1023 m−3, a = 1nm and crystal sizes R = 34–78 nm. The simulations
are shown at two different sample temperatures T = 20, 50◦C.

As the temperature of the sample increases in Fig. 13b, the
electron survival probability curves P (t) become steeper and closer
together, i.e. the recombination takes places faster.

2.5. Monte Carlo simulations of luminescence
phenomena in nanodosimetric materials:
excited state tunneling

TL signals from nanodosimetric materials have been studied exten-
sively during the past twenty years, especially in the area of
nanomaterials doped with rare earths. One of the primary effects
being studied experimentally have been possible correlations between
the nanocrystal size and the shape and magnitude of TL signals.
While there is an abundance of experimental studies attempting to
establish such correlations, the underlying mechanism is not well
understood. In this section we present the simulations of TL glow
curves by Pagonis and Truong [36], which are based on tunneling
taking place from the excited state of the system.

In general, Fig. 14 shows three types of kinetic models which
have been studied using Monte-Carlo methods. Fig. 14a shows the
energy scheme in the well-known one trap one recombination center
model (OTOR), which is commonly used to describe delocalized
luminescence phenomena in crystalline solids ([1]). Several energy
transitions are shown schematically: thermal or optical excitation of a
carrier from the ground state of the electron trap into the conduction
band (solid arrow D), retrapping from the conduction band into
the trap (solid arrow T), and direct recombination transition of
electrons from the conduction band into a recombination center (L)
resulting in the emission of photons (dashed arrow R). It is noted
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Fig. 14. (a) The energy scheme in the delocalized OTOR model, used for describ-
ing luminescence phenomena in crystalline solids. (b) The localized transition
model for tunneling processes taking place from the ground state of the trap.
(c) The localized transition model for tunneling processes taking place from the
excited state of the trap. The various transitions are discussed in the text. (After
Pagonis and Truong [36]).

that all transitions shown in Fig. 14a represent delocalized transition
processes, as opposed to the models in Fig. 14b and Fig. 14c which
are based on localized energy transitions. Previous TL Monte Carlo
work based on Fig. 14a were presented in the papers by Mandowski
and collaborators, and are summarized in Pagonis and Truong [36].

Typically the Monte Carlo calculations in Fig. 14a are performed
with the total population of carriers simultaneously, and in each
step of the Monte-Carlo simulation one finds the lowest transition
time for all possible transitions, and this is the only transition
which is executed. Mandowski and collaborators demonstrated how
to perform Monte Carlo calculations in a solid consisting of a number
of separate systems. Each transition in this scheme is represented
mathematically by a transition rate λ(t)(s−1) as follows. The rate for
thermal excitation (transition D) from the trap into the conduction
band is λTHERMAL(t) = s exp(−E/kT ) where E, s are the thermal
activation energy and frequency factor characterizing the thermal
properties of the electron trap. The corresponding optical excitation
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rate (also transition D) is given by λOPTICAL = σI where σ (cm2) is
the optical cross section of the trap and I is the photon flux (photons
cm−2 s−1). The retrapping rate for transition T from the conduction
band into the trap is given by the product T = An(N − n) where
n, N are the number of trapped electrons and total number of traps
correspondingly, and An is the constant retrapping coefficient for a
single carrier into a single trap. The recombination rate (transition
R) from the conduction band into the luminescence center (L) is
given by the product R = Amm, where m is the number of trapped
holes in recombination centers, and Am is the constant recombination
coefficient for a single carrier into a single center.

In each step of the Monte Carlo simulation, the times ti of each
allowed transition are generated for all carriers in the system, and
can be evaluated from the integral equation (Mandowski and Świ tek
[24], their Eq. 5): ∫ ti

0
λ(t′)dt′ = − ln(ai) (36)

where ai is a homogeneous normalized random variable from the
interval (0, 1) and λ(t) (in s−1) is the appropriate transition rate (T ,
R, or D) for the transition under consideration, as described above.
Eq. (36) has simple analytical solutions for the transitions R, T in
Fig. 14a, since these transitions do not depend on time. However, in
the case of TL experiments Eq. (36) must be solved numerically, as
described below.

Fig. 14b shows a ground state tunneling model which is based on
localized energy transitions; recent Monte Carlo work using this type
of model was presented in previous sections of this chapter.

In the third type of model shown in Fig. 14c, electrons can
tunnel from the excited state of the electron trap to the luminescence
center. During a typical laboratory experiment, one uses optical or
thermal excitation, and the dominant process is the recombination
process taking place from the excited state of the trapped electron
to the recombination center. The relevant localized transitions are
shown as D, T , R in Fig. 1c; although these transitions have some
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mathematical similarity to the transitions of the delocalized model
of Fig. 1a, the important difference is that they involve the excited
state of the trap, instead of taking place via the conduction
band.

In a typical TL experiment, the sample is heated with a linear
heating rate β(K/s) from a starting temperature To up to a high
temperature around 500◦C, so that the temperature varies with time
t as T (t) = To + βt. Jain et al. [25] and previously Thioulouse et al.
[9] and Chang and Thioulouse [37], demonstrated that for this type
of experiment Eq. (36) must be replaced by the following Arrhenius
type of expression (Jain et al. [34], their Eqs. 3 and 6):

λ(r, t) = s exp[−r/a] exp[−E/{kB(To + βt)}] (37)

where E is the thermal activation energy between the ground state
and the excited state of the trapped electron, kB is the Boltzmann
constant and s is the frequency factor characterizing tunneling taking
place from the excited state of the system. It is noted that Eq. (37)
is derived by assuming quasi-static equilibrium conditions (QE) in
the excited state tunneling model of Fig. 14c.

By combining Eqs. (36) and (37) we obtain:

s exp[−r/a]
∫ ti

0
exp[−E/{kB(To + βt′)}]dt′ = − ln(ai) (38)

Pagonis and Truong [36] presented a Monte Carlo simulation
study of the effect of nanocrystal size on the TL signals from a
random distribution of electrons and positive ions, based on Eq. (38).
These authors varied the following parameters in the model: the
radius of the crystal R, the tunneling length a, and the relative
concentrations of electrons and ions.

Typical results from the simulations of Pagonis and Truong [36]
are shown in Fig. 15. As the radius of the nanocrystals becomes
larger, the peaks of the TL glow curves shift towards lower tempera-
tures and changes occur in both peak intensity and peak width. For
large crystals with a constant density of positive ions, the TL glow
curves reach the analytical limit expected for bulk materials.
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Fig. 15. Monte Carlo simulation for a spherical distribution, by varying the
relative initial concentrations of electrons and positive ions in the system. The
initial number of positive ions inside the sphere is kept constant at mo = 1100,
while the initial number of electrons is varied. The solid lines correspond to the
analytical equation, which is valid for very low values of the ratio no/mo. (a)
The electron survival probability and (b) the corresponding TL glow curve (After
Pagonis and Truong [36]).

Figure 16 shows simulations of TL glow curves in crystals with
equal number of electrons and positive ions at all times. Figure 16a
shows that at low temperatures the tunneling process for small
crystals is slower than in large crystals, with the arrows indicating
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Fig. 16. Simulations for crystals with equal number of electrons and positive ions
at all times. (a) At low temperatures the tunneling process for small crystals is
slower than in large crystals, with the arrows indicating the direction of increasing
radius R. At higher temperatures the order of the curves is reversed. (b) The
corresponding simulated TL curves. (After Pagonis and Truong [36]).

the direction of increasing radius R. At higher temperatures the order
of the curves is reversed. Fig. 16b shows the corresponding simulated
TL curves.

Figure 17 shows the same type of simulations as Fig. 16, for
a smaller tunneling length a = 1nm while keeping all the other
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Fig. 17. The simulations in Fig. 16 are repeated for a smaller tunneling length.
The TL height shows the opposite behavior than in Fig. 16b. (After Pagonis and
Truong [36]).

parameters fixed. The TL height as a function of the radius R in
Fig. 17 shows the opposite behavior than the corresponding curves
in Fig. 16. The solid lines are again a guide to the eye.

As the radius of the nanocrystals becomes larger, the peaks of
the TL glow curves shift towards lower temperatures and changes
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occur in both peak intensity and peak width. For large crystals with
a constant density of positive ions, the TL glow curves reach the
analytical limit expected for bulk materials.

Pagonis and Truong [36] compared the results from the Monte
Carlo simulations with experimental data for Durango apatite, a
material which is known to exhibit strong anomalous fading due to
tunneling. Specifically Polymeris et al. [38] found that ball milling of
Durango apatite powders for up to 48 hours, resulted in significant
changes in the TL and OSL luminescence signals in this material.
Figure 18 shows some of their experimental TL glow curves for the
same Durango apatite sample which has undergone ball milling for
2 hours (dark circles) and 24 hours (open circles). The sample was
irradiated with a small test dose after the end of the ball milling
process, and its prompt TL signal was measured immediately after.
Figure 18a shows the complete normalized TL glow curves for the
two ball milling times, while Fig. 18b shows details of the same data
between 200 and 400◦C. The main peak in the TL glow curve for
the smaller crystals with an average grain size R = (0.4± 0.2)μm, is
shifted towards higher temperatures than the TL for larger crystals
with average grain size R = (5.0±1.0)μm. The qualitative behavior of
the TL glow curves in Fig. 18 is very similar to the simulated behavior
shown in Fig. 17, although the temperature and radius scales are
very different. The grain sizes in Polymeris et al. [38] were obtained
by analyzing scanning electron microscope images (SEM) of the ball
milled sample. This comparison of experimental data with the Monte
Carlo model in this chapter is very encouraging, and prompts the
need for additional work to produce quantitative agreement between
experiment and theory.

Pagonis and Truong [36] also examined the commonly used
assumption of nearest neighbor interactions within the model, and
presented simulated examples at very high charge densities, in
which this assumption breaks down. Finally these authors also
demonstrated that the Monte Carlo method presented in their paper
can also be used for linearly modulated infrared stimulated lumines-
cence (LM-IRSL) signals, which are of importance in luminescence
dosimetry and luminescence dating applications.
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Fig. 18. Experimental TL glow curves for a Durango apatite sample which has
undergone ball milling for 2 hours (dark circles, larger crystals) and 24 hours
(open circles, smaller crystals). (a) The complete TL glow curves (b) Detailed
view of the normalized signals from (a), between 200 and 400◦C. (After Pagonis
and Truong [36] and Polymeris et al. [38]).

2.6. Conclusions

In this chapter, two approaches were discussed for calculating tunnel-
ing phenomena in random distributions of electrons and positive ions.
The differential equation approach is useful for large crystals, and
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several analytical equations are available in the literature. Several of
these analytical equations have been developed by assuming that the
concentrations of electrons is much smaller than the concentration
of positive ions, which allows the system to be described by the
constant density of positive ions. The model by Jain et al. [10]
and the analytical equations developed by Kitis and Pagonis [11]
have been a major recent development, and have contributed in the
understanding of tunneling phenomena in a random distribution of
electron-hole pairs. Specifically the analytical equations by Kitis and
Pagonis [11] have now been used to describe luminescence signals
from a variety of feldspars and apatites (Polymeris et al. [39]; Sahiner
et al. [40]; Sfampa et al. [41]; Kitis et al. [42]).

The Monte Carlo approach is useful for crystals of any size,
especially in cases where analytical equations are not available in the
literature. The rate of quantum tunneling in random distributions
of electrons and positive ions was shown to depend in a complex
manner on three fundamental lengths in the system: the radius of
the crystal R, the tunneling length a, and the initial average distance
〈d〉 between electrons and positive ions (which is directly related to
the density of charges in the material).

Both the differential equation and Monte Carlo approaches can
be used to describe the ground state tunneling phenomena, as well
as tunneling taking place from the excited state of the electron trap.
Further modeling work will need to combine the localized transition
models in this chapter with delocalized transitions involving the
conduction and valence band, as well as transitions taking place via
the band tail states.
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