
5DGLDWLRQ 0HDVXUHPHQWV ��� ������ ������

$YDLODEOH RQOLQH �� -XQH ����
����������� ���� (OVHYLHU /WG� $OO ULJKWV UHVHUYHG�

Competition between long time excitation and fading of 
thermoluminescence (TL) and optically stimulated luminescence (OSL) 

R. Chen a,*, J.L. Lawless b, V. Pagonis c 

a Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, 69978, Israel 
b Redwood Scientific Incorporated, Pacifica, CA94044-4300, USA 
c Physics Department, McDaniel College, Westminster, MD21157, USA   

A R T I C L E  I N F O   

Keywords: 
TL 
OSL 
Excitation 
Fading 
Equilibrium 

A B S T R A C T   

In the present work, we consider the filling and thermal emptying of traps and centers in a simple one-trap-one- 
recombination-center model in a small system such as a quartz grain in nature, when both the excitation and 
thermal release of electrons are very slow. Due to the nature of the very slow process, Monte Carlo simulations 
appear to be a very appropriate method. However, in parallel, we have applied an approximate analytical 
method and found practically the same results although the Monte Carlo results showed some small fluctuations 
due to the statistical nature of the procedure. This is in line with the experimental results which are also expected 
to have statistical fluctuations. The main result found is that after a long enough time, measured in hundreds or 
thousands years or more, the filling of the trap reaches a plateau which, depending on the parameters, may be 
very significantly smaller than the concentration of the trap in question. This equilibrium value is the same if we 
start from very low, e.g. zero concentration or very high, above the equilibrium value. This plateau level depends 
strongly on the relevant parameters. However, comparing simulations with activation energies of 1.2 eV and 1.3 
eV shows strong dependence of the plateau level on the energy. Similarly, we can expect strong dependence on 
the temperature at which the sample is held. The results reached here and shown in Figs. 1–4 are based on the 
simplest OTOR model, but similar results of approaching a plateau level which are not due to the saturation of 
traps may occur in more complex systems as is demonstrated by simulations based on the Bailey model for quartz 
which includes several traps and centers.   

1. Introduction 

In two recent papers the slow fading of thermoluminescence (TL) and 
optically stimulated luminescence (OSL) have been studied using 
Monte-Carlo simulations. The models used were the one-trap-one- 
recombination-center (OTOR) (Chen and Pagonis, 2015) in which 
mainly non-exponential fading was predicted and a more complex 
model with additional deep trap (Chen and Pagonis, 2020) where fading 
was shown to be mainly exponential. The fading involved was consid-
ered to be the thermal fading from basically rather stable, deep traps, 
like those found in archaeological or geological samples. However, if the 
time scale is of hundreds or thousands years or more, a very slow 
thermal decay can be expected. In these papers by Chen and Pagonis 
(2015, 2020), it is suggested that since the thermal release of electrons in 
a small grain (e.g. of quartz from pottery) from traps is very slow, of the 
order of one electron per day or less, the natural way of dealing with the 

decay is by using a Monte-Carlo method rather than solving the relevant 
set of differential equations governing the process at constant 
temperature. 

One should remember, however, that with archaeological and 
geological samples, the scenario is different than having a preliminary 
fast excitation and a very long fading. Actually, for hundreds or thou-
sands (or more) years it is irradiated very slowly and in parallel, elec-
trons are escaping thermally very slowly from the traps into the 
conduction band, from which they can either retrap or perform 
recombination with holes in centers. One can expect that after a certain 
(long) period of time, the concentration of trapped electrons will reach a 
plateau which, depending on the trapping parameters and rate of exci-
tation, may be significantly lower than real saturation of the traps. The 
number of electrons trapped during the archaeological or geological 
periods may be translated into the TL or OSL intensities during the 
readout, thermal or optical, or to the ESR signal. 

* Corresponding author. 
E-mail address: chenr@tau.ac.il (R. Chen).  

Contents lists available at ScienceDirect 

Radiation Measurements 

journal homepage: http://www.elsevier.com/locate/radmeas 

https://doi.org/10.1016/j.radmeas.2020.106422 
Received 24 February 2020; Received in revised form 12 May 2020; Accepted 12 June 2020   



5DGLDWLRQ 0HDVXUHPHQWV ��� ������ ������

�

In a paper by Autzen et al. (2018), the question of how many 
electron-hole pairs are produced in a quartz grain under natural irra-
diation is discussed. By using the previously developed radiation 
transport model-Geant4, they report values of ~80000 electron-hole 
pairs generated per Gray for quartz grains of ~50 μm. A typical dose 
rate in nature may be ~2Gy/ka, which would mean ~160 pairs pro-
duced per year or ~0.4 per day in the grain. 

In this paper, we consider the filling of traps under these conditions 
of very slow excitation and very slow release of trapped electrons. We 
follow the process by using a Monte Carlo simulation as well as an 
approximate analytical procedure. 

In the present work, we have also further investigated this effect by 
using the comprehensive phenomenological general models by Bailey 
(2001) and Pagonis et al. (2008). These models have been used effec-
tively to simulate various aspects of luminescence in quartz, and have 
explained many phenomena observed in luminescence emissions from 
quartz (Pagonis et al., 2011; Chen and Pagonis, 2011). In the present 
paper we are interested in the effect of slow irradiation and rather 
elevated irradiation temperature on the trap filling process for a quartz 
sample. Relevant previous simulations were carried out by Koul and 
Patil (2015) and Koul et al. (2016). These authors carried out extensive 
simulation studies and examined the effect of geological and burial 
temperatures on the sensitization of luminescence emission in quartz. 
The results of these simulations suggested that the temperatures pre-
vailing during burial time have appreciable impact on the natural 
luminescence signals in quartz. 

2. The model 

The simple model we consider is shown schematically in Fig. 1. It 
consists of a trap N (cm!3) with instantaneous occupancy of n (cm!3), 
activation energy E (eV), frequency factor s (s!1) and a center M (cm!3) 
with instantaneous occupancy of m (cm!3). The recombination proba-
bility coefficient is Am (cm3s!1) and the retrapping probability coeffi-
cient is An (cm3s!1). This is the well known one-trap-one-recombination- 
center (OTOR) model and it is assumed that holes are trapped first in the 
center during the excitation and then, electrons from the conduction 
band may recombine and annihilate them. X (cm!3s!1) is the rate of 
production of electron-hole pairs which, as mentioned above is rather 
small. It is assumed that the hole is trapped in the center rather quickly 
during excitation, and the electron either retraps or recombines with a 
hole in the center instantaneously. Later on, once an electron may be 
thermally raised into the conduction band, it either recombines with a 
trapped hole or retraps into an empty trap. Under these assumptions, 
occurring at the relatively low temperature of excitation, we do not have 
to consider the concentrations of electrons in the conduction band or 
holes in the valence band. As a result, we can assume that within the 
OTOR model, all along the process, we have an equal number of trapped 
electrons and holes, n¼m. This version of OTOR in which n¼m is 
sometimes termed “General one trap (GOT)" model (see e.g. Kierstead 
and Levy, 1991). 

In this process, we consider thermally released electrons being 
captured by traps on one hand and being annihilated by recombination 
on the other hand. Intuitively, we can expect that after a long enough 
period of time, the number of electrons entering the trap per unit time 
will be the same as the net number of electrons captured, and we will get 
an equilibrium situation. Let us examine this equilibrium and its 
dependence on the relevant parameters first. Let us consider a period of 
time Δt which for the sake of the Monte Carlo simulations will be 1 day 
¼ 86400 s. Let us define the probability that an electron is thermally 
raised per second, 

γ ¼ s expð!E = kTÞ: (1) 

This means that the dimensionless probability for an electron to be 
raised to the conduction band is γ⋅Δt. To begin with, let us consider the 
situation at the equilibrium reached after long enough exposure to 

irradiation. The balance of electrons being trapped during this period of 
24 h is, 

X AnðN ! nÞ
AnðN ! nÞ þ Amnþ γn AnðN ! nÞ

AnðN ! nÞ þ Amn ¼ γn: (2) 

The first term on the left is the ratio of electrons raised by the irra-
diation in this period of time which end up in the traps. The second term 
on the left represents those electrons raised thermally from the traps but 
end up back in the traps due to retrapping. Together, they are equal to 
the total number of electrons raised thermally from the traps. The 
equality between the two sides of the equation results from the fact that 
we assume no accumulation of electrons in the conduction band. 

It is important to mention that as pointed out above, we are dealing 
with a small grain with a volume of ~10!7 cm!3. For the sake of the 
Monte Carlo simulation, it is very convenient to consider the number of 
traps and their occupancy as dimensionless numbers rather than con-
centrations. If, for example, the concentration of relevant traps is ~1014 

cm!3, from this point on, we’ll take the number of traps in the grain as 
N¼107 and the occupancy n will be the instantaneous number of trapped 
electrons (as well as trapped holes) in the grain (see also the discussion 
in the Appendix). Obviously, Eq. (2) will remain the same with this 
revised definition of N and n. Moving the second term on the left to the 
other side and rearranging results in 

X AnðN ! nÞ
AnðN ! nÞ þ Amn¼ γ Amn2

AnðN ! nÞ þ Amn: (3) 

Since the denominators are the same, we get directly a quadratic 
equation 

γAmn2 þXAnn ! XAnN ¼ 0: (4) 

The positive solution of this equation is the equilibrium value neq 

neq ¼
!XAn þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2An

2 þ 4XAnγNAm
p

2γAm
: (5) 

The second term in the numerator of Eq. (5) can be written as 
XAn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 4γNAm=XAn

p
and for a given set of the parameters and a small 

enough X, the unity under the square root sign can be dropped. The 
expression for neq reduces to 

neq &
XAn

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4γNAm=ðXAnÞ

p
! 1

#

2γAm
: (6) 

Again, for small enough X, the unity can be dropped and one gets 

neq &

ffiffiffiffiffiffiffiffiffiffiffi
NXAn

γAm

s

: (7) 

Thus, for a given set of parameters, for small enough X, neq goes like 
the square root of the value of X. 

We will evaluate the equilibrium values found by Eq. (5) to the re-
sults of the Monte Carlo simulation and the approximate analytical so-
lution for certain sets of parameters below. It is worth mentioning that 
within the framework of the OTOR model, this equilibrium value which 
is expected to be reached after long enough time is independent of the 
initial filling of the traps. No matter whether we start with empty traps 
and centers (n ¼ 0) or any other value, we expect to get the same 
equilibrium value. This includes situations with initial values higher 
than the equilibrium occupancy as demonstrated below. Another 
important point is that the equilibrium value obviously depends on the 
given parameters N, Am and An, but also on the variable parameters, X, 
the rate of production of electron-hole pairs and on the temperature at 
which the grain is held during the long irradiation through the param-
eter γ given in Eq. (1). 
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3. Monte Carlo simulation 

As pointed out above, the natural way to deal with this very slow 
process of excitation is by using a Monte Carlo method. Although an 
approximate analytical solution is also given (see below), let us describe 
briefly the Monte Carlo procedure. Suppose that at a certain point in 
time, there are n trapped electrons. For the next period of time, Δt, we 
consider the probability that an electron pair is produced and once that 
has taken place, the probability that the electron gets trapped (rather 
than recombines). With the mentioned rate of electron-hole production 
of 0.4 (per Δt), we draw a MATLAB-generated pseudo-random number 
between zero and 1 and if this number is smaller than 0.4, we draw 
another such pseudo-random number and check if it is smaller than 
An(N-n)/[ An(N-n)þAmm]. If both conditions are met, we determine that 
the electron has been trapped and change n into nþ1. For the same 
period of time Δt, we should check if electrons are thermally released 
into the conduction band. For each of the n trapped electrons we draw a 
pseudo-random number between zero and 1 and if this number is 
smaller than γ from Eq. (1), we change n into n-1. However, the raised 
electron is momentarily in the conduction band and may retrap. We 
draw one more such pseudo-random number and if it is smaller than 
An(N-n)/[ An(N-n)þAmm], we determine that the electron has retrapped 
and change the previous n-1 back to n. Once all the electrons have been 
tested, we register the final number of electrons in traps, go to the next 
time interval Δt and repeat the procedure with the final number of 
electrons as the new initial value. Obviously, within the framework of 
this model, we assume that the number of trapped holes in centers is the 
same as the number of trapped electrons all along. 

An example of the Monte Carlo results are shown in Fig. 2. The pa-
rameters chosen are N ¼ 107; n0 ¼ 105; Am ¼ 10!8cm3s!1; An¼10!10 

cm3s!1; E ¼ 1.3 eV; s ¼ 10!12 s!1; T¼300 K and X ¼ 0.4 per day. The 
points in Fig. 2 (a) show the number n of trapped electrons as a function 
of time when we start from empty traps. The same procedure can be 
repeated when we start with more trapped electrons than the equilib-
rium reached after a long time. This is shown as the points in curve (b) in 
Fig. 2. We chose here an initial value of n0 ¼ 105. As is seen, the two 
curves converge into practically the same value. As for the value of the 
equilibrium, substituting in Eq. (5) one gets neq ¼ 5.643 ' 104 and 
practically the same result with Eqs. (6) and (7). Also, as can be seen in 
Fig. 2, both (a) and (b) converge toward the same value. 

The same procedure has been repeated for the same set of parameters 
with one change, namely, the activation energy is somewhat smaller, E 
¼ 1.2 eV. The results are shown in Fig. 3 where the points in curve (a) 
represent the Monte Carlo results when we start from empty traps and in 
curve (b) when the procedure starts with n0 ¼ 104. Using Eq. (5), we get 
with this set of parameters neq ¼ 8.18 ' 103, which is also the plateau 
reached in Fig. 3. Note the significant difference in the value of neq for a 
rather small change in the activation energy. 

To demonstrate further the strong dependence of the results on the 
activation energy and the temperature, Fig. 4 shows the results of the 
Monte Carlo simulations with the same set of parameters except for E ¼
1.4 eV and only from n0 ¼ 0 up, for the temperatures 35, 50, 65 and 80 
(C. As is seen, here only the 80 (C line reaches the equilibrium after 
~2750 years, and the lower-temperature lines are expected to reach 
equilibrium only after much longer periods of time. 

A point should be made about the use of dimensionless numbers for 
the values of N and n0. These are pure numbers of the traps and their 
occupancy in a given grain. Obviously, the Monte Carlo method can deal 
only with numbers. The connection between these numbers and the 
dimensional magnitudes one normally uses is described in the Appendix 
below. 

4. Approximate analytical analysis 

Using the same terms appearing in Eq. (3) we can write the differ-
ential equation governing the filling or emptying the traps, 

dn
dt ¼

AnðN ! nÞ
AnðN ! nÞ þ Amn X ! Amn2

AnðN ! nÞ þ Amn γ: (8) 

The first term on the right is the rate of free electron creation 
multiplied by the fraction of those electrons that end up in the trap. The 
second term on the right is the rate of the thermal excitation of electrons 
out of the trap multiplied by the fraction of those electrons that end up 
recombining in the center. 

To simplify the expressions, let us assume that n < < N, 

dn
dt ¼

AnN
AnN þ Amn X ! Amn2

AnN þ Amn γ: (9) 

Note that although we assume that n < < N we keep the second term 
Amn in the denominator because we may have that Am is significantly 
larger than An so that Amm may not be negligible compared to AnN. We 
can re-write Eq. (9) as 

dn
dt ¼

AnNX ! Amn2γ
AnN þ Amn : (10) 

Equation (10) shows that the electron concentration n increases 
when AnNX >Amn2γ while n decreases if AnNX <Amn2γ. This means that, 
whatever the initial value of n is, n will asymptotically tend toward n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiAnNX=Amγ

p
as pointed out above in Eq. (7). This is a quasi-steady state 

of the trap in question. 
Reorganizing Eq. (10) leads to 

AnN þ Amn
AnNX ! Amn2γ dn¼ dt; (11) 

and we can integrate 
Z n

n0

AnN
AnNX ! Amn’2γ

dn’ þ
Z n

n0

Amn
AnNX ! Amn’2γ

dn’ ¼ t; (12)  

where n0 is the initial concentration. n’ is a variable of integration. After 
some algebra, one gets 

1
2

2

6664

ffiffiffiffiffiffiffiffiffiffiffi
AnN
XAmγ

s

ln
1 þ

ffiffiffiffiffiffiffiffi
Amγ

AnNX

q
n

1 !
ffiffiffiffiffiffiffiffi
Amγ

AnNX

q
n
! 1

γ ln
$

1 ! Amγn2

AnNX

%
3

7775

n

n0

¼ t: (13) 

Equation (13) is a transcendental equation which allows us to 
compute directly the time t at which a given n occurs. This allows plots 
of n vs. t to be made. Such results are shown in the solid lines of Fig. 2(a 
and b) and Fig. 3(a and b) for the sets of parameters mentioned in the 
text. The results of this approximate solution are seen to be very close to 
the Monte Carlo simulation results. 

5. Bailey’s model 

We have further investigated the phenomena described in the pre-
vious sections, by using the comprehensive phenomenological general 
models by Bailey (2001) and Pagonis et al. (2008). We are interested in 
the effect of slow irradiation and elevated irradiation temperature on the 
trap filling process for a quartz sample. Relevant previous simulations 
were carried out by Koul and Patil (2015) and Koul et al. (2016). The 
results of these simulations suggested that the temperatures prevailing 
during burial time have appreciable impact on the natural luminescence 
signals in quartz. 

The model by Bailey (2001) is based on five electron and four hole 
trapping centers. The electron trapping centers consist of the 110 (C 
trap, a 230 (C trap, fast and medium OSL traps, and a thermally 
disconnected trap. These electron traps are designated as Levels 1–5 in 
the model, respectively. The hole traps in the model consist of thermally 
unstable non-radiative recombination centers (R1 and R2), thermally 
stable radiative recombination center (L) and thermally stable 
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non-radiative recombination center. These hole traps are designated as 
Levels 6–9 in the model, correspondingly. The transport equations 
describing the traffic of charge with time in various centers and traps of 
the model are: 

dni

dt ¼ ncðNi ! niÞAi ! niλiðP;TÞ ! nisi expð!Ei = kTÞ ði¼ 1; :::; 5Þ; (14)  

dnj

dt ¼ nv
&
Nj ! nj

'
Aj ! njsj exp

&
!Ej

(
kT

'
! ncnjBj ðj¼ 6; :::; 9Þ; (15)  

dnc

dt ¼X !
Xq

i¼1

$
dni

dt

%
!

Xqþr

j¼qþ1

&
ncnjBj

'
; (16)  

dnv

dt ¼X !
Xqþr

j¼qþ1

$
dnj

dt

%
!

Xqþr

j¼qþ1

&
ncnjBj

'
; (17)  

L¼ ncn8B8ηðTÞ: (18) 

According to Bailey (2001), the levels 1 to q ¼ 5 are electron traps 
while levels qþ1 to q þ r (with r ¼ 4) are hole centers. Apparently due to 
a print mistake, the last term on the right-hand side of Eq. (17) was 
missing in Bailey’s paper. The correct version has been given later by a 
number of researchers (see e.g. Friedrich et al., 2016). Equations (14) 
and (15) represent the variation in the charge population with time, for 
electronic and hole trapping centers respectively. Similarly equations 
(16) and (17) represent the change in the charge population with time in 
the conduction and valence bands, respectively, and Eq. (18) describes 
the luminescence signal produced by recombination at the luminescence 
center L. The various parameters described in the above equations are: 
Ni, the total concentrations of the i-th electron traps (cm!3); ni, the 
instantaneous concentrations of trapped electrons (cm!3); si, the fre-
quency factors (s!1); Ei, the electron trap depths below the conduction 
band (eV); Nj the j-th total concentration of hole traps (cm!3); nj, the 
instantaneous concentrations of trapped holes (cm!3); Ej, the hole 
depths above the valence band (eV); k, Boltzmann’s constant (eV⋅K!1); 
T, the absolute temperature (K); Ai, the conduction band to electron trap 
transition probabilities (cm3s!1); Aj, the valence band to hole trap 
transition probabilities (cm3s!1); Bj, the conduction band to hole trap 
transition probabilities (cm3s!1); λi, the optical de-trapping rates (s!1); t, 
the time (s); η, the luminescence efficiency factor which describes 
thermal quenching effects; β, the constant heating rate (Ks!1) and X, the 
ionization or pair production rate (cm!3s!1). The optimum values 
assigned to these parameters for different centers and traps of the model 
are listed in Table 1 of Bailey (2001), as model variant Qtz-A1. The 
simulation procedures used in this paper for the natural quartz sample 
are identical to the ones used in Bailey (2001), and are listed as steps 1–4 
in the present Table 1. The slow natural irradiation during the geological 
and burial time spans was performed by using a very low dose rate of 2 
mGy/year or 6.34 ' 10!11Gy⋅s!1, close to the dose rate one would 
expect in nature. These simulation procedures of the natural sample are 
of course a simplification, and the actual natural processes are much 
more complex. However, the simulations provide a useful insight into 
the effect of the slow dose rate and of burial temperature of the quartz 

sample on the trap filling process. Specifically we examine the trap 
filling n2(t) and n3(t) for levels 2 and 3 in the Bailey (2001) model, which 
correspond to TL peaks at 230 (C and 300 (C respectively. It is noted that 
level 3 in the model also represents the source of the fast OSL component 
in quartz, which is used routinely for luminescence dating applications. 
The environmental temperatures generally prevailing on the globe in the 
range 10–60 (C were used to represent the burial temperatures experi-
enced by quartz grains in the simulation. The simulations were carried 
out using the open access R programs KMS by Peng and Pagonis (2016). 
These programs provide the code for several published kinetic models of 
luminescence phenomena in quartz, and contain compact functions to 
simulate events in the geological history of quartz: crystallization, 
irradiation, optical illumination, and heating processes. These processes 
can be simulated easily by creating sequences of compact R functions for 
several models. The simulations in this paper were carried out using 
both the Bailey (2001) and the more comprehensive Pagonis et al. 
(2008) models. The two models produced very similar results in this 
study, and led to the same conclusions. Graph 5(a) shows the results for 
level 2 of the Bailey model. This electron trap corresponds to the TL peak 

Table 1 
The simulation steps using the comprehensive quartz model by Bailey (2001). 
Steps 1–4 are a simulation of a ‘‘natural’’ quartz sample similar to Bailey (2001) 
procedure but at a lower burial temperature, a lower dose rate and over a longer 
time than he used. The results of these simulations are shown in Fig. 5.   

1 Geological dose irradiation of 1000 Gy at 1 Gy/s.  
2 Geological time – heat to 350 (C.  
3 Illuminate for 100 s at 200 (C.  
4 Burial dose D at burial temperature T ¼ 10 (C at a very low natural dose rate of 6.34 

' 10!11 Gy/s, for a burial period of 60,000 years. Record the trap filling of levels 2. 
and levels 3 in the model during the burial period of 60,000 years.  

5 Repeat the simulations steps 1–4 above for other burial temperatures T ¼ 20–60 (C.  

Fig. 1. Transitions taking place during excitation and fading in the basic one 
trap one recombination center system. 

Fig. 2. Simulations of the population of electrons in traps as a function of time. 
The parameters chosen are N ¼ 107; Am ¼ 10!8 cm3s!1; An ¼ 10!10 cm3s!1; E ¼
1.3 eV; s ¼ 1012 s!1; T ¼ 300 K. The points represent the results of the Monte 
Carlo simulation whereas the solid lines are the results of the approximate 
analytical solution reached by numerical solution of Eq. (13). In curve (a), the 
initial number of trapped electrons is 0 and in curve (b) it is 105. 
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at ~220 (C and its trap filling during the burial is clearly affected by the 
burial temperature of the sample. The kinetic parameters for this trap 
are E ¼ 1.55 eV, s ¼ 5 ' 1014 s!1 which corresponds to a TL peak with a 
maximum at 220 (C when using a heating rate of 1 K/s. At a burial 
temperature of 30 (C this trap will have reached equilibrium in nature 
over a span of 60,000 years. Graph 5(b) shows the corresponding 
behavior for level 3 of the Bailey model. This deeper electron trap cor-
responds to the TL peak at ~300 (C, and is also the source of the fast OSL 
component in quartz. The filling of this trap is affected very little by the 
burial temperature of the sample. The kinetic parameters for this trap 
are E ¼ 1.70 eV, s ¼ 5 ' 1013 s!1 and a maximum intensity at 300 (C 
with a heating rate of 1 K/s. Even at a burial temperature of 50 (C, this 
trap will not have reached equilibrium in nature over a span of 70,000 
years. The conclusion is that the 220 (C TL peak of quartz should be used 
with caution for dating and thermochronometry, while the 300 (C is 
much less problematic. These results from the comprehensive multiple 
level quartz models are consistent with the Monte Carlo simulations in 
the previous sections, and also with the general practice in thermo-
chronometry and dating applications. We also note the relevant ther-
mochronometry work by Schmidt et al. (2015) who studied the red TL 
luminescence signals from deep core quartz samples, and found that the 
TL peaks at ~230 (C and ~300 (C behave in different ways when irra-
diated in the laboratory, and also when their natural signals are 
modeled. 

6. Discussion 

In this work, we report on the competition between very slow exci-
tation of electrons into traps in a small grain and the very slow thermal 
decay taking place during rather long periods of time which may be the 
case in archaeological and geological samples in nature. The simulation 
was performed using the Monte Carlo method which seems to be 
appropriate here since the electrons are being raised either thermally or 
by the irradiation at a very slow rate, and can be considered one at a 
time. However, repeating the calculation analytically with reasonable 
approximations resulted in very close results as seen in Figs. 2 and 3. It 
should be noted that the asymptotic equilibrium values of trapped 
electrons (and holes) were the same for a given set of parameters 

irrespective of whether the initial concentration is smaller (zero in the 
examples given) or higher than the final equilibrium values. Another 
point to note is the slight scattering of the Monte Carlo points above and 
below the analytically reached line. This has to do with the statistical 
nature of the Monte Carlo simulation but one has to remember that the 

Fig. 3. Similar to Fig. 2, with the same parameters but smaller activation en-
ergy E ¼ 1.2 eV. Here, the initial number of trapped electrons in curve (b) is 2 
' 104. 

Fig. 4. With the same set of parameters except for the use of E ¼ 1.4 eV, the 
growth of the number of trapped electrons simulated by the same procedure, 
starting from n0 ¼ 0 at different temperatures. 

Fig. 5. Simulated results of the occupancy of level 2 (curve a) and level 3 
(curve 3) in the Bailey model for quartz. The simulations were performed by the 
R programs; the parameters are given in the text. 
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physical processes of excitation and fading are also of statistical nature. 
In this sense, the Monte Carlo results reflect better the physical situation. 
Note also that these fluctuations are better visible in Fig. 3 than in Fig. 2, 
apparently because the equilibrium value (~8000) in Fig. 3 is signifi-
cantly smaller than in Fig. 2 (~56000). This issue of the statistical nature 
of the results will be further discussed elsewhere. 

We should note that the filling of the traps over very long time has 
been discussed. The outcome in terms of thermoluminescence (TL) or 
optically stimulated luminescence may be proportional to the final 
population. However, more complicated situations may occur, in 
particular if more traps or centers are involved. Note that if one performs 
ESR measurements of the trapped electrons (see e.g. Schmidt et al., 
2015; Timar-Gabor et al., 2020), similar behavior may be expected. 
Finally, it should be mentioned that the simulations reached a plateau 
after a long time which is not the saturation level of the traps. Two 
papers that bear some resemblance to the present work should be 
mentioned. Chen et al. (1990) discussed the competition between 
excitation and bleaching of TL, but the model is different since these 
authors assume that the bleaching is done optically by the same wave-
length of excitation. Also, the time scale discussed there is of minutes. 
Chen et al. (1991) reported on experimental results of the sensitivity 
changes of the 100 (C peak in synthetic quartz due to cycles of irradi-
ation followed by high temperature activation. The measured curves 
resemble the present results, increasing if starting from low sensitivity 
and decreasing if starting from high sensitivity, and both curves 
asymptotically approach approximately the same value. 

It is interesting to note that, as seen by comparing Figs. 2 and 3, the 
plateau level reached is strongly dependent on the activation energy 

which is 1.3 eV in Figs. 3 and 1.2 eV in Fig. 2. Similar strong dependence 
can be expected with different temperatures. Another important point to 
remember is that we dealt with the OTOR model which is practically the 
simplest possible model. Although the mathematics would be more 
complicated if more traps and/or centers are involved, one can expect 
that the main result namely that a plateau is reached following a very 
long period is not the saturation value and that it may depend strongly 
on the relevant parameter, e.g., the activation energy or the tempera-
ture. An example for this has been shown in Fig. 5(a) which has been 
reached by using the more elaborate Bailey model. It is worth 
mentioning that Brown et al. (2017) dealt with the balance between 
irradiation and thermal depletion of traps in a system associated with 
feldspars. Their theory was based on localized transitions due to 
tunneling from an excited state to randomly distributed luminescence 
centers. 

In conclusion, if one encounters a TL curve, OSL signal or ESR signal 
that reaches a plateau level, one should consider the possibility that it is 
a result of long-time competition between excitation and bleaching 
rather than real saturation. 

As for the simulations of the quartz Bailey model, as pointed out 
above, one may conclude that for thermochronometry, the peak occur-
ring at 300 (C is much more reliable than that appearing at 220 (C. 
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APPENDIX 

Let us consider Eq. (8) which is the usual conservation equation for trap population where N and n are concentrations with units of cm!3 and X is an 
ionization rate per unit volume, cm!3s!1, 

dn
dt ¼

AnðN ! nÞ
AnðN ! nÞ þ Amm X ! Amn2

AnðN ! nÞ þ Amn γ: (A1) 

The Monte Carlo simulation uses integers. Let N be the number of traps in the grain and ν be the number of filled traps. N and ν are unitless integers. 
The grain experiences X ionizations per unit time. Thus, N, ν and X are related to N, n and X according to 

N ¼N =V; X ¼X =V; n¼ ν =V; (A2)  

where V is the volume of the grain. Substituting the definitions of Eq. (A2) into Eq. (A1) and multiplying both sides of the equation by V, we find 

dν
dt ¼

AnðN ! νÞ
AnðN ! νÞ þ Amν X ! Amν2

AnðN ! νÞ þ Amν γ: (A3) 

Equation (A3) is the conservation equation analogous to Eq. (A1) (Eq. (8) in the text), but for mean trap population ν. In other words, subject to the 
transformation in Eq. (A2), the same conservation equation works for both concentrations N and n and for numbers N and ν. 
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