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C H A P T E R 12

Coupled Oscillations

In this Chapter, we will explore the properties of coupled harmonic oscillators. These sys-
tems can be analyzed by using either the Lagrangian approach of Chapter 8, or alternatively
using Newton’s Second Law. The simplest form of these systems in mechanics contains two
masses connected by springs to each other. A second simple example of coupled mechanical
oscillators is the double pendulum, which also exhibits a wide range of interesting behaviors.
We will see that these simple oscillating systems can exhibit normal modes of oscillation,
which are patterns of motion in which all parts of the system move sinusoidally with the
same frequency. The frequencies of the normal modes of a system are known as its natural
frequencies of oscillation. We will find that any motion exhibited by the system can be
expressed as a linear combination of these normal modes.

The discussion of the two-mass system will lead us to a more general description of lin-
early coupled harmonic systems, and how their equations of motion can be written in matrix
form. The best way to obtain solutions to the equations of motions for coupled oscillations
is by using standard techniques from Linear Algebra, in order to find the eigenvalues and
eigenvectors of a matrix. The eigenvectors and eigenvalues of the matrix characterizing the
oscillating system are closely related to its normal modes.

This Chapter will conclude with a general treatment of coupled oscillations, and a dis-
cussion of normal coordinates.

12.1 COUPLED OSCILLATIONS OF A TWO-MASS THREE-SPRING SYSTEM
12.1.1 The Equations of Motion - Numerical Solution
Consider two masses m1 and m2 attached to three springs with spring constants
k1, k2, and k3 and to the two fixed walls, as shown in Figure 12.1.

Figure 12.1: A system of two coupled harmonic oscillators consisting of two masses m1 and
m2 connected with three springs with constants k1, k2, and k3.
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Let us denote by x1(t) and x2(t) the horizontal displacements of the two masses from
their respective equilibrium points. The force on the first mass due to the first spring is
−k1x1. The middle spring will be stretched by a distance (x1−x2), and the force on the
first mass due to this middle spring will be −k2(x1−x2). The total force on the first mass
must then be F1 =−k1x1−k2(x1−x2). Similarly, the force on the second mass due to the
middle spring is −k2(x2−x1), and the force on the second mass due to this third spring
will be −k3x2.

Using the notation ẍ for acceleration, the equations of motion from Newton’s Second
Law F =ma for the two masses are:

m1ẍ1 =−k1x1−k2(x1−x2)
m2ẍ2 =−k2(x2−x1)−k3x2

}
(12.1.1)

In a more general way, we can obtain the same equations by starting with the Lagrangian
formulation of Chapter 8. The potential energies of the two end springs are V1 = k1x

2
1/2

and V3 = k3x
2
2/2, while the potential energy for the middle spring is V2 = k2(x1−x2)2/2,

so that the Lagrangian is equal to:

L= T −VTotal = 1
2m1ẋ1

2 + 1
2m2ẋ2

2− 1
2k1x

2
1−

1
2k3x

2
2−

1
2k2(x1−x2)2 (12.1.2)

The Euler-Lagrange equations are:

d

dt

(
∂L
∂ẋ1

)
− ∂L
∂x1

= 0 → m1ẍ1 =−k1x1−k2(x1−x2) (12.1.3)

d

dt

(
∂L
∂ẋ2

)
− ∂L
∂x2

= 0 → m2ẍ2 =−k2(x2−x1)−k3x2 (12.1.4)

These are of course the same equations as in (12.1.1).
In general, it is not possible to obtain the solutions x1(t) and x2(t) of the system of

equations (12.1.1) analytically, and they must be obtained by numerically integrating the
equations for given initial conditions of the system. The initial conditions are usually given
as the initial positions and initial speeds of the two masses.

Example 12.1 shows how to obtain and plot the numerical solutions x1(t) and x2(t),
with the initial conditions x1(0) = 0, x2(0) = a, ẋ1(0) = a, and ẋ2(0) = 0.

Example 12.1: Numerical solution for the general case of two coupled oscil-
lating masses

Integrate (12.1.1) for k1 = 1N/m, k2 = 2N/m, k3 = 1N/m,m1 = 1kg,m2 = 2kg and plot
the numerical solutions x1(t) and x2(t), with the initial conditions x1(0) = 0, x2(0) = 1m,
ẋ1(0) = 0 and ẋ2(0) = 0. This situation corresponds to the case where the first mass m1 is
initially at rest at its equilibrium position (x1(0) = 0 and ẋ1(0) = 0), and the second mass
is pulled a distance a= 1 meter from its equilibrium and released from rest (ẋ2(0) = 0).

Solution:
In this example we can use either the NDSolve command in Mathematica to numeri-

cally solve the differential equations, or alternatively use the DSolve command to obtain
the analytical solutions x1(t) and x2(t). Although Mathematica can obtain analytical ex-
pressions for x1(t) and x2(t), they are not listed here because they are algebraically very
complex, and therefore the output is suppressed in this example by using the semicolon
(;) at the end of the command line.
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The parameter numValues in the code contains the numerical values for the parameters
m1, m2, k1, k2, and k3 in the form of a rule (→). These numerical values are needed in
order to plot the solutions using the Plot and GraphicsGrid commands.

sol = DSolve[{m1∗x1”[t] ==−k1∗x1[t] + k2∗ (x2[t]−x1[t]),
m2∗x2”[t] ==−k3∗x2[t] + k2∗ (x1[t]−x2[t]),x1[0] == 0,x1′[0] == 0,
x2[0] == a,x2′[0] == 0},{x1[t],x2[t]}, t];

numValues = {a→ 1,k1→ 1,k2→ 2,k3→ 3,m1→ 1,m2→ 2};

gr1 = Plot[x1[t]/.sol/.numValues,{t,0,20},PlotLabel→ “(A) x1[t]”];
gr2 = Plot[x2[t]/.sol/.numValues,{t,0,20},PlotStyle→Dashed,
PlotLabel→ “(B) x2[t]”];

GraphicsGrid[{{gr1,gr2}},Frame→ True, ImageSize→ Large]

Out[ ]=
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The plots of x1(t) and x2(t) in Example 12.1 are obviously complex, and it is not
possible to give a simple physical description of the motion of the two masses. The key
physical component which creates this complex behavior is the middle spring in Figure 12.1
since this is the component that couples the motion of the two masses.

12.1.2 Equal Masses and Identical Springs: The Normal Modes
In Examples 12.2 and 12.3, we look at the special case of equal masses (m1 = m2), and
springs with equal spring constants (k1 = k2 = k3). This is an interesting physical situation,
in which the analytical solutions are simple, and it may be easy to understand the physics
of the situation. These two examples introduce the concept of normal modes in a simple
and clear manner.

Example 12.2: Equal masses and identical springs: the symmetric oscillation
mode

Integrate (12.1.1), and plot the numerical solutions x1(t) and x2(t) for the special case
of identical masses and identical springs, m1 =m2 and k1 = k2 = k3. Consider the physical
situation with the initial conditions x1(0) = a, x2(0) = a, ẋ1(0) = 0 and ẋ2(0) = 0. Plot
the solutions with Mathematica, by using the numerical values a = 1.0 m, k = 1.0 N/m,
m= 1.0 kg.

Solution:
This situation corresponds to the case where the two masses are pulled the same

distance a from their corresponding equilibrium, and are released from rest (ẋ1(0) = 0
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and ẋ2(0) = 0). The Mathematica code uses the DSolve command to obtain analytical
expression for x1(t) and x2(t), and the ExpToTrig command is used to convert the solutions
x1(t) and x2(t) into a form containing trigonometric functions instead of exponential
functions. The result of DSolve appears above the graph.

The analytical solutions are x1(t) = x2(t) = acos
(√

k/mt
)

. This tells us that if the
two masses are initially displaced from equilibrium by the same distance and released
from rest, the two masses will move together with the same speed and in phase as if the
middle spring was not present. This makes physical sense, since in this situation the middle
spring will be unstretched from its natural length, and will remain unstretched during the
motion of the two masses. The frequency of oscillation for both masses in this situation is
ω1 =

√
k/m, i.e. the same frequency as if only one of the two masses were attached to a

single spring with a spring constant k.

sol =
ExpToTrig[DSolve[{m ∗ x1”[t] == −k ∗ x1[t] + k ∗ (x2[t] − x1[t]),m ∗ x2”[t] ==
−k ∗ x2[t] + k ∗ (x1[t] − x2[t]),x1[0] == a,x1′[0] == 0,x2[0] == a,x2′[0] ==
0},{x1[t],x2[t]}, t]]//Simplify

numValues = {a→ 1,k→ 1,m→ 1};

gr1 = Plot[x1[t]/.sol/.numValues,{t,0,10},PlotLabel→ “x1[t]”];
gr2 = Plot[x2[t]/.sol/.numValues,{t,0,10},PlotLabel→ “x2[t]”,PlotStyle→Dashed];

GraphicsGrid[{{gr1,gr2}},Frame→ True, ImageSize→ Large]

OUTPUT:{{
x1[t]→ aCos

[√
kt√
m

]
,x2[t]→ aCos

[√
kt√
m

]}}

Out[ ]=
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Example 12.3: Equal masses and identical springs: the antisymmetric oscilla-
tion

Repeat Example 12.2, by using a different set of initial conditions x1(0) = a, x2(0) =−a,
ẋ1(0) = 0 and ẋ2(0) = 0. Plot the solutions with Mathematica by using the numerical values
a= 1.0 m, k = 1.0 N/m, m= 1.0 kg.

Solution:
In this situation the two masses are initially displaced from their equilibrium positions

by equal and opposite distances a, and are then released from rest.
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The analytical solutions (appearing above the graph) in this case from Mathematica
are x1(t) = acos

(√
3k/mt

)
and x2(t) = −acos

(√
3k/mt

)
. This tells us that the two

masses will move together with the same speed, but they will be completely out of phase
as shown in the output of the code. The frequency of oscillation for both masses in this
situation is ω2 =

√
3k/m.

sol =
ExpToTrig[DSolve[{m ∗ x1”[t] == −k ∗ x1[t] + k ∗ (x2[t] − x1[t]),m ∗ x2”[t] ==
−k ∗ x2[t] + k ∗ (x1[t] − x2[t]),x1[0] == a,x1′[0] == 0,x2[0] == −a,x2′[0] ==
0},{x1[t],x2[t]}, t]]//Simplify

numValues = {a→ 1,k→ 1,m→ 1};

gr1 = Plot[x1[t]/.sol/.numValues,{t,0,10},PlotLabel→ “x1[t]”];
gr2 = Plot[x2[t]/.sol/.numValues,{t,0,10},PlotLabel→ “x2[t]”,PlotStyle→Dashed];

GraphicsGrid[{{gr1,gr2}},Frame→ True, ImageSize→ Large]

OUTPUT:{{
x1[t]→ aCos

[√
3
√
kt√
m

]
,x2[t]→−aCos

[√
3
√
kt√
m

]}}

Out[ ]=
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Examples 12.2 and 12.3 show that the system of two equal masses and three identical
springs in Figure 12.1 has two natural frequencies given by ω1 =

√
k/m and ω2 =

√
3k/m.

By properly choosing the initial conditions in the system as in the two examples, we can
force both masses to oscillate with a single frequency, either ω1 or ω2. In these special
situations, the two natural frequencies are uncoupled from each other, and we say that
these are the normal modes of the oscillating system.

Figure 12.2 shows schematically the motion of the two masses in either the symmetric
oscillation pattern with frequency ω1 =

√
k/m (left panel), or an antisymmetric oscillation

with frequency ω2 =
√

3k/m (right panel).
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(A) (B)

Figure 12.2: The normal modes of the two mass-three spring system in Figure 12.1, corre-
sponding to the natural frequencies ω1 =

√
k/m and ω2 =

√
3k/m. These normal modes

represent symmetric and antisymmetric oscillations respectively.

12.1.3 The General Case: Linear Combination of Normal Modes
If the two masses are displaced at some random distances and are released, they will oscillate
in a complex manner, which can be described as the linear combination of oscillations with
frequencies ω1 and ω2.

The Mathematica code in Example 12.4 shows a general case, where the solutions
x1(t) and x2(t) are indeed linear combinations of trigonometric functions involving the two
frequencies ω1 =

√
k/m and ω2 =

√
3k/m. This example shows how we can numerically

decouple the motions corresponding to these two frequencies.

Example 12.4: Analytical solutions for equal masses and identical springs;
decoupling of the two frequencies

Integrate (12.1.1) for identical springs and identical masses, with the initial conditions
x1(0) = 0, x2(0) = a, ẋ1(0) = 0 and ẋ2(0) = 0.

Solution:
In this case, the second mass in Figure 12.1 is moved from equilibrium by a distance a

and is released from rest. The first mass is initially at rest at its equilibrium position.
The analytical solutions obtained from Mathematica (appearing above the graphs) are

x1(t) = (a/2)
[
cos
(√

k/mt
)
− cos

(√
3k/mt

)]
x2(t) = a/2

[
cos
(√

k/mt
)

+ cos
(√

3k/mt
)]

and these are shown in panels (A) and (B) below. Once more the functions x1(t) and x2(t)
are complicated, and it is difficult to describe how exactly the two masses are moving.
This is because mathematically both x1(t) and x2(t) contain the frequencies ω1 and ω2.

Panels (C) and (D) show plots of the function x1(t) + x2(t) = acos
(√

k/mt
)

and

x1(t)− x2(t) = acos
(√

3k/mt
)

, respectively. By using these linear combinations, it is
now possible to decouple the two normal modes, so that the motions shown in panels (C)
and (D) are simple cosine functions with frequencies ω1 =

√
k/m and ω2 =

√
3k/m.
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sol =
ExpToTrig[DSolve[{m ∗ x1”[t] == −k ∗ x1[t] + k ∗ (x2[t] − x1[t]),m ∗ x2”[t] ==
−k ∗ x2[t] + k ∗ (x1[t] − x2[t]),x1[0] == 0,x1′[0] == 0,x2[0] == a,x2′[0] ==
0},{x1[t],x2[t]}, t]]//Simplify

numValues = {a→ 1,k→ 1,m→ 1};

gr1 = Plot[x1[t]/.sol/.numValues,{t,0,10},BaseStyle → {Bold,FontSize →
14},PlotLabel→ “(A) x1[t]”];
gr2 = Plot[x2[t]/.sol/.numValues,{t,0,10},BaseStyle → {Bold,FontSize →
14},PlotStyle→Dashed,
PlotLabel→ “(B) x2[t]”];
gr3 = Plot[(x1[t] + x2[t])/.sol/.numValues,{t,0,10},BaseStyle→{Bold,FontSize→ 14},
PlotLabel→ “(C) x1[t]+x2[t]”];
gr4 = Plot[(x1[t] − x2[t])/.sol/.numValues,{t,0,10},BaseStyle → {Bold,FontSize →
14},PlotStyle→Dashed,
PlotLabel→ “(D) x1[t]-x2[t]”];

test = GraphicsGrid[{{gr1,gr3},{gr2,gr4}},Frame→ True, ImageSize→ Large]

OUTPUT:{{
x1[t]→ 1

2a
(

Cos
[√

kt√
m

]
−Cos

[√
3
√
kt√
m

])
,x2[t]→ 1

2a
(

Cos
[√

kt√
m

]
+ Cos

[√
3
√
kt√
m

])}}
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In Example 12.5 we examine one more interesting behavior of the two-mass system,
the case of weakly coupled oscillators. In this example the weak coupling is established by
choosing a middle spring with smaller spring constant than the two end springs (k1 = k3 = k
and k2 << k)
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Example 12.5: Weakly coupled oscillators
Integrate (12.1.1) and plot the numerical solutions x1(t) and x2(t) for the special case of

identical masses (m1 =m2 = 1 kg), identical end springs (k1 = k3 = 1 N/m), and a smaller
middle spring constant (k2 = 0.2 N/m). Consider two physical situations with the initial
conditions x1(0) = 1 m, x2(0) = 0, ẋ1(0) = 0, and ẋ2(0) = 0.

Solution:
The Mathematica code below shows the solutions x1(t) and x2(t) in panels (A) and

(B). The motion of the two masses shows a clear beat pattern, in which mass m1 reaches a
maximum amplitude of oscillation at the same time that m2 reaches a minimum amplitude,
and vice versa.

In this example it is again possible to uncouple the motions of the two masses, by
plotting the sum x1(t)+x2(t) and the difference x1(t)−x2(t) of the two functions x1(t) and
x2(t). This is shown in panels (C) and (D) of the figure, where the two linear combinations
x1(t)+x2(t) and x1(t)−x2(t) can be seen to have pure harmonic oscillations with different
frequencies, corresponding to the two normal modes of the system. We will see a more
general method of uncoupling the normal modes of the system later in this Chapter, when
we discuss the concept of normal coordinates.
sol = ExpToTrig[DSolve[{m ∗ x1”[t] == −k1 ∗ x1[t] + k2 ∗ (x2[t]− x1[t]),m ∗ x2”[t] ==
−k3∗x2[t] + k2∗ (x1[t]−x2[t]),x1[0] == a,x1′[0] == 0,
x2[0] == 0,x2′[0] == 0},{x1[t],x2[t]}, t]]//Simplify;

numValues = {a→ 1,k1→ 1,k2→ .2,k3→ 1,m→ 1};

gr1 = Plot[x1[t]/.sol/.numValues,{t,0,90},BaseStyle→{Bold,FontSize→ 14},
PlotLabel→ “(A) x1[t]”];
gr2 = Plot[x2[t]/.sol/.numValues,{t,0,90},BaseStyle→{Bold,FontSize→ 14},
PlotStyle→Dashed,PlotLabel→ “(B) x2[t]”];
gr3 = Plot[(x1[t] + x2[t])/.sol/.numValues,{t,0,90},
BaseStyle→{Bold,FontSize→ 14},PlotLabel→ “(C) x1[t]+x2[t]”];
gr4 = Plot[(x1[t]−x2[t])/.sol/.numValues,{t,0,90},
BaseStyle→{Bold,FontSize→ 14},PlotStyle→Dashed,
PlotLabel→ “(D) x1[t]-x2[t]”];

GraphicsGrid[{{gr1,gr3},{gr2,gr4}},Frame→ True, ImageSize→ Large]
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Out[ ]=
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In the next two sections, we develop a more formal mathematical analysis of the normal
modes for the system in Figure 12.1 by using the techniques of Linear Algebra.

12.2 NORMAL MODE ANALYSIS OF THE TWO-MASS THREE-SPRING SYS-
TEM

We now proceed to analyze the system of equations (12.1.1) in two different cases. In
Subsection 12.2.1, we show how to obtain the analytical solution for the two-mass three-
spring system by using the standard matrix techniques of Linear Algebra. In Subsection
12.2.2, we show how to solve the same problem by turning it into an eigenvalue/eigenvector
type of problem, which can be easily analyzed using the commands available in Mathematica
and Python.

12.2.1 Equal Masses and Identical Springs - Analytical Solution
In the case of equal masses m1 =m2 =m, and identical spring constants k1 = k2 = k3 = k,
the equations of motion (12.1.1) become:

mẍ1 =−kx1−k(x1−x2) mẍ2 =−k(x2−x1)−kx2 (12.2.1)
This system of equations can be written in a compact matrix form:(

m 0
0 m

)(
ẍ1
ẍ2

)
=
(
−2k k
k −2k

)(
x1
x2

)
(12.2.2)

We can now solve this matrix equation by using the standard methods of Linear Algebra,
and by following the same eigenvalue problem procedure we used in Chapter 11 for the
principal moments of inertia.

We proceed in two steps, first we find the natural frequencies ω of the system, and second
we find the positions x1(t) and x2(t), as follows.

Since we expect oscillatory motion, we try solutions of the form:

x1(t) =A1e
iωt x2(t) =A2e

iωt (12.2.3)
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where A1 and A2 are the unknown amplitudes of oscillation for the two masses, and ω is
the unknown frequency of oscillation. Substituting these into the matrix equation (12.2.2):(

m 0
0 m

)(
−ω2A1e

iωt

−ω2A2e
iωt

)
=
(
−2k k
k −2k

)(
A1e

iωt

A2e
iωt

)
(12.2.4)

By canceling the exponential factor eiωt which is common to all terms, and combining the
matrices, we obtain: (

−ω2m+ 2k −k
−k −ω2m+ 2k

)(
A1
A2

)
=
(

0
0

)
(12.2.5)

This matrix equation represents a system of equations. A theorem from Linear Algebra
says that if the determinant of the matrix is nonzero, then there is a unique solution, which
in this case is the trivial solution A1 = A2 = 0. However, in order for multiple solutions to
exist, the determinant of the matrix must be zero. We are interested in a non-trivial solution
A1,A2 6= 0, so we solve for the values of ω which cause the determinant to be zero.

We set the determinant of the matrix equal to zero:

det
(
−ω2m+ 2k −k
−k −ω2m+ 2k

)
= 0 (12.2.6)(

ω2m−2k
)(
ω2m−2k

)
−k2 = 0 (12.2.7)

Solving for ω, we obtain four possible solutions, only two of which are positive:

ω1 =
√
k

m
, ω2 =

√
3k
m

(12.2.8)

This completes the first part of the analysis, where we determined the two natural frequen-
cies ω1 and ω2. In the previous section, we found that oscillatory solutions to our system of
equations can have one of these two frequencies.

In order to complete the description of the system, we must also find the two unknown
amplitudes of oscillation A1 and A2. If we substitute ω1 =

√
k
m into the matrix equation

(12.2.6), we obtain:


(√

k
m

)2
m−2k k

k

(√
k
m

)2
m−2k

(A1
A2

)
=
[
−k k
k −k

](
A1
A2

)
= 0 (12.2.9)

By multiplying the matrices, we obtain these two equations:

−kA1 +kA2 = 0 (12.2.10)

kA1−kA2 = 0 (12.2.11)

It is clear that these two equations are identical, and that A1 = A2. Note that this always
happens when we are finding the eigenvectors of a 2×2 matrix, one of the equations will be
redundant and can just be ignored. We conclude that when ω1 =

√
k/m, the two amplitudes

are equal A1 =A2, and therefore x1(t) = x2(t) =A1e
iωt. We can now write the first solution

for the motion of the two masses, which corresponds to the first normal model ω1 =
√
k/m:
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x1(t) = x2(t) =A1e
iω1t (12.2.12)

Since A1 = A2 and x1(t) = x2(t), this type of motion corresponds to both masses moving
in the same direction and in phase at all times, as we saw previously in Figure 12.2a. This
type of motion is known as the first normal mode or the symmetric mode of oscillation,
and the general motion of the system in this mode can be written in terms of trigonometric
functions:

x1(t) = x2(t) =D1 cos(ω1t−φ1) (12.2.13)

In matrix notation, the first normal mode can be written as:(
x1(t)
x2(t)

)
=D1

(
1
1

)
cos(ω1t−φ1) (12.2.14)

By working in a similar fashion for the second natural frequency of the system, we substitute
ω2 =

√
3k/m into (12.1.1), and obtain A1 = −A2. Since A1 = −A2, this type of motion

corresponds to the two masses moving in opposite directions, while the center of mass
remains stationary, as shown in Figure 12.2b. This type of motion is known as the second
normal mode or the antisymmetric mode of oscillation.

We can then write the second possible solution corresponding to ω2 =
√

3k/m as:(
x1(t)
x2(t)

)
= E1

(
1
−1

)
cos(ω2t−φ2) (12.2.15)

In general, the motion of the system will be a linear combination of the two normal modes,
corresponding to the frequencies ω1 =

√
k/m and ω2 =

√
3k/m.

A faster method of obtaining the normal mode frequencies ω1 and ω2 and the amplitudes
A1 and A2, is by solving the matrix equation (12.2.5) using the symbolic capabilities of
Mathematica. Example 12.6 shows how to use the Solve command in Mathematica, to
obtain the general solution for the two-mass three-spring system.

Example 12.6: Solving the two-mass three-spring system by solving the matrix
equation

Solve the two oscillating mass system in Figure 12.1 as a matrix equation problem.
Find the normal mode frequencies ω1 and ω2 and the general relationship between the
amplitudes A1 and A2, in the case of equal masses and identical springs.

Solution:
The Mathematica code below uses the Solve and Simplify commands to solve the matrix

equation (12.2.5). The Simplify command is used together with its option, Assumptions
which restricts the results to positive values of the parameters k and m. After a warning
message that Mathematica might not be able to obtain all solutions, the code produces
four possible frequencies, only two of which are positive and therefore acceptable. The
first normal mode frequency is ω1 =

√
k/m, and the corresponding relationship between

the amplitudes is A1 = A2. This is of course the symmetric mode of oscillation for the
system that we saw previously. The code also produces the second normal mode frequency
ω2 =

√
3k/m, and the corresponding relationship between the amplitudes A1 = −A2 for

the antisymmetric mode of oscillation.
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M =
(

2∗k/m −k/m
−k/m 2∗k/m

)
;

Simplify
[
Solve

[
M.

(
A1
A2

)
== ω∧2∗

(
A1
A2

)
,{ω,A1,A2}

]
,

Assumptions->k > 0&&m> 0]

Solve : Equations may not give solutions for all “solve” variables.

OUTPUT:{
{A1→ 0,A2→ 0},

{
ω→−

√
k
m ,A2→A1

}
,

{
ω→

√
k
m ,A2→A1

}
,{

ω→−
√

3
√

k
m ,A2→−A1

}
,

{
ω→

√
3
√

k
m ,A2→−A1

}}

12.2.2 Solving the Two-Mass and Three-Spring System as an Eigenvalue Problem
In this section, we show how to solve the two-mass three-spring system as an eigenvalue
problem, using the commands available in Mathematica and Python. Let us consider again
the general equations of motion (12.1.1), for the system of two masses in Figure 12.1:

m1ẍ1 =−k1x1−k2(x1−x2) m2ẍ2 =−k2(x2−x1)−k3x2 (12.2.16)

or after dividing the first equation by m1, and the second equation by m2:

ẍ1 =− k1
m1

x1−
k2
m1

(x1−x2) ẍ2 =− k2
m2

(x2−x1)− k3
m2

x2 (12.2.17)

By substituting a trial solution of the form x1(t) =A1e
iωt and x2(t) =A2e

iωt and canceling
the common factor eiωt, these equations yield:

−A1ω
2 =− k1

m1
A1−

k2
m1

(A1−A2) −A2ω
2 =− k2

m2
(A2−A1)− k3

m2
A2 (12.2.18)

These can be written in compact matrix form as: k1+k2
m1

−k2
m1

−k2
m2

k2+k3
m2


A1

A2

= ω2

A1

A2

 (12.2.19)

You will recognize that this equation is an eigenvalue problem in the theory of Linear
Algebra, similar to the eigenvalue problems we encountered for the moment of inertia matrix
in Chapter 11. As we remember from that chapter, in an eigenvalue problem we are given
a square matrix B, and we are asked to find a vector a such that Ba = λa, where λ is a
constant. The vector a is called an eigenvector of the square matrix B, corresponding to the
eigenvalue λ. We will explore the details of eigenvalue problems in Chapter 13.

For the two mass system of Figure 12.1, the eigenvalue problem to be solved becomes
clear by writing (12.2.19) in this matrix form:
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GA = ω2A (12.2.20)

A =
(
A1
A2

)
G =

 k1+k2
m1

−k2
m1

−k2
m2

k2+k3
m2


We are looking for the eigenvalues λ = ω2 of the square matrix G, which will give us the
natural frequencies of oscillation. We are also looking for the corresponding eigenvectors A,
which will give us the normal modes of oscillation corresponding to each natural frequency.
In order for the eigenvalue equation (12.2.20) to have a non-trivial solution (A 6= 0), the
determinant of the matrix

(
G−ω21

)
must be zero, where 1 is the 2× 2 identity matrix.

This gives:

det

k1+k2
m1

−ω2 −k2
m1

−k2
m2

k2+k3
m2

−ω2

= 0 (12.2.21)

This is the characteristic equation of our eigenvalue problem. From this point on, we proceed
by following the same two-step method used in the previous section. First, we must solve
the characteristic equation (12.2.21) in order to find the frequencies ω1 and ω2. These
frequencies will depend on k1, k2, k3, m1, and m2. In the next step, we substitute the first
natural frequency ω1 into (12.2.19), in order to find (A1,A2), the first normal mode. Finally,
we repeat the previous steps using the second natural frequency ω2, in order to find (A1,A2)
for the second normal mode.

The Mathematica and Python codes in Example 12.7 show how to find the eigenvectors
and eigenvalues for the two-mass system in Figure 12.1.

Example 12.7: The two-mass system as an eigenvalue/eigenvector problem
Solve the two oscillating mass system in Figure 12.1 as an eigenvalue/eigenvector prob-

lem, in these two cases:
(a) Identical springs and identical masses.
(b) Identical springs and different masses.

Solution:

(a) In this case the matrix,

G =

 2k
m

−k
m

−k
m

2k
m


and the Mathematica code below uses the commands Eigenvalues and Eigenvectors.

The code produces the first eigenvalue ω2
1 = k/m or ω1 =

√
k/m, and the corresponding

eigenvector, (
A1
A2

)
=
(

1
1

)
This is exactly what we obtained in Section 12.2 for the first normal mode of the

oscillating two-mass system. Similarly, the second eigenvalue ω2 =
√

3k/m, and the cor-
responding eigenvector
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(
A1
A2

)
=
(
−1
1

)
This is again the same result we obtained in Section 12.2 for the second normal mode.

A=
( 2∗k

m
−k
m

− k
m

2∗k
m

)
;

Eigenvalues[A]//Simplify

OUTPUT:
{3k
m ,

k
m

}
Eigenvectors[A]//Simplify

OUTPUT: {{−1,1},{1,1}}

Here is the corresponding Python code, which produces the same eigenvalues and eigen-
vectors, each with a multiplicity of 1. For example the output (k/m,1, [Matrix([[1], [1]])]
is interpreted as the ω1 =

√
k/m with a multiplicity of 1, and the Matrix result indicates

the corresponding eigenvector (
A1
A2

)
=
(

1
1

)

from sympy import ∗
i n i t p r i n t i n g ( )
k = Symbol (” k ” , p o s i t i v e =”True ”)
m = Symbol (”m” , p o s i t i v e =”True ”)

G=Matrix ( [ [ 2 ∗ k/m,−k/m] , [−k/m,2∗ k/m] ] )
a=G. e i g e n v a l s ( )
p r i n t (” Eigenva lues =”, l i s t ( a . keys ( ) ) )
p r i n t (” E igenvector s =”,G. e i g e n v e c t s ( ) )

OUTPUT
Eigenva lues= [3∗ k/m, k/m]
Eigenva lues= [ ( k/m, 1 , [ Matrix ( [ [ 1 ] , [ 1 ] ] ) ] ) ,

(3∗k/m, 1 , [ Matrix ( [ [ − 1 ] , [ 1 ] ] ) ] ) ]

(b) In this case the matrix ,

G =

 2k
m1

−k
m1

−k
m2

2k
m2


and the Mathematica code produces the two eigenvalues and eigenvectors:

ω1 =

√
k (m1 +m2−z)

m1m2

A1

A2

=

m1−m2+z
m1

1
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ω2 =

√
k (m1 +m2 +z)

m1m2

A1

A2

=

−m1+m2+z
m1

1


where z =

√
m2

1−m1m2 +m2
2. In this two-mass three-spring system with unequal

masses, the ratio of the amplitudes A1/A2 depends in a complicated manner on the masses
(m1,m2), but does not depend on the spring constant k.

A=
( 2∗k

m1
−k
m1

− k
m2

2∗k
m2

)
;

Eigenvalues[A]//Simplify

OUTPUT:
{
k
(
m1+m2−

√
m12−m1m2+m22

)
m1m2 ,

k
(
m1+m2+

√
m12−m1m2+m22

)
m1m2

}

Eigenvectors[A]//Simplify

OUTPUT:
{{

m1−m2+
√

m12−m1m2+m22

m1 ,1
}
,

{
−−m1+m2+

√
m12−m1m2+m22

m1 ,1
}}

12.3 THE DOUBLE PENDULUM
Figure 12.3 shows a double pendulum, consisting of two masses m1 and m2 attached to
massless rigid rods of lengths L1 and L2. We can treat this problem using the same meth-
ods as for the two-mass oscillating system, by developing the equations of motion and
evaluating the natural frequencies. In Subsection 12.3.1, we will develop the Lagrangian
and the equations of motion. In the Subsection 12.3.2, we will find the analytical solution
for the special case of two identical coupled pendula. In Subsection 12.3.3, we will treat the
double pendulum as an eigenvalue problem, and show how to obtain the natural frequencies
and the amplitudes of the normal modes.

12.3.1 The Lagrangian and Equations of Motion - Numerical Solutions
The position (x1,y1) of the first mass is (x1,y1) = (L1 sinθ1,L1 cosθ1), so that the kinetic
energy of mass m1 is:

T1 = 1
2m1

(
ẋ2

1 + ẏ2
1
)

= 1
2m1

(
L2

1 cos2 θ1θ̇
2
1 +L2

1 sin2 θ1θ̇
2
1
)

= 1
2m1L

2
1θ̇

2
1 (12.3.1)

The location (x2,y2) of the second mass is shifted with respect to the first mass by (x1,y1),
so that (x2,y2) = (L1 sinθ1 +L2 sinθ2,L1 cosθ1 +L2 cosθ2). Therefore the kinetic energy of
the second mass is:

T2 = 1
2m2

(
ẋ2

2 + ẏ2
2
)

(12.3.2)

= 1
2m2

{
d

dt
(L1 sinθ1 +L2 sinθ2)2 + d

dt
(L1 cosθ1 +L2 cosθ2)2

}
(12.3.3)
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After differentiating and collecting terms, we find:

T2 = 1
2m2

(
L2

1θ̇
2
1 + 2L1L2θ̇1θ̇2 cos(θ1−θ2) +L2

2θ̇
2
2
)

(12.3.4)

θ2

θ1

L1

L2

m1

m2

+x

+y

Figure 12.3: The double pendulum oscillator is characterized by the two angles (θ1(t),θ2(t)).

The total kinetic energy is then:

T = 1
2 (m1 +m2)L2

1θ̇
2
1 +m2L1L2θ̇1θ̇2 cos(θ1−θ2) + 1

2m2L
2
2θ̇

2
2 (12.3.5)

For amplitudes of small oscillations we use the approximation cos(θ1−θ2)' 1, so that:

T = 1
2 (m1 +m2)L2

1θ̇
2
1 +m2L1L2θ̇1θ̇2 + 1

2m2L
2
2θ̇

2
2 (12.3.6)

The total potential energy V is the sum of potential energies for each pendulum:

V =m1gy1 +m2gy2 = (m1 +m2)gL1 cosθ1 +m2gL2 cosθ2 (12.3.7)

For amplitudes of small oscillations, we use the approximation cosθ1 ' 1− θ2
1
2 and cosθ2 '

1− θ2
2
2 so that:

V = (m1 +m2)gL1

(
1− θ

2
1
2

)
+m2gL2

(
1− θ

2
2
2

)
(12.3.8)

The Lagrangian L= T −V of the system is:

L= 1
2 (m1 +m2)L2

1θ̇
2
1 +m2L1L2θ̇1θ̇2 + 1

2m2L
2
2θ̇

2
2

− (m1 +m2)gL1

(
1− θ

2
1
2

)
−m2gL2

(
1− θ

2
2
2

)
(12.3.9)

We can now find the Euler-Lagrange equations:

d

dt

(
∂L
∂θ̇1

)
− ∂L
∂θ1

= 0
(
∂L
∂θ̇2

)
− ∂L
∂θ2

= 0 (12.3.10)

By evaluating the derivatives and simplifying, we obtain:


