“Master Book File” — 2020/4/30 — 13:22 — page 29 — #41

CHAPTER 2

Single-Particle Motion in One
Dimension

In this chapter we will examine one-dimensional motion, i.e. motion along a line. It is
sometimes the case that a particle’s motion need only to be described along one direction.
Furthermore, a careful study of one-dimensional motion will be a useful foundation for un-
derstanding more general motion in higher dimensions. In this chapter, we will will give
several examples of solving Newton’s Second Law, F' = ma in one dimension. We will con-
sider several types of forces: both constant and those which depend on time F(t), velocity
F(v) and position F(z). In addition, we will discuss and demonstrate two different uses of
computers: how to use computer algebra systems (CAS) to obtain the analytical solutions
of Newton’s Second Law, and how to obtain numerical solutions of ordinary differential
equations (ODE) using software packages and by using the Euler Method.

2.1 EQUATIONS OF MOTION

To begin our study of one-dimesional motion, we first need to make some assumptions about
the object whose motion we are examining. One fundamental assumption in this chapter is
that the object being studied is a point particle. In order to mathematically describe the
motion of a particle under the influence of a force, we need to find the particle’s equations of
motion. The equations of motion of a particle are the equations which describe its position,
velocity, and acceleration as a functions of time. Equations of motion can be in the form of
algebraic equations, or in the form of differential equations.

As we will see, the equations of motion of a particle can be found by solving Newton’s
Second Law as a differential equation. In this chapter we will focus on one-dimensional
motion, where the force vector and the particle’s displacement are along the same line (but
not necessarily in the same direction-the direction could be horizontal or vertical). Because
all vectors in a given problem lay along the same line, we drop the vector notation in all the
equations. A negative sign between two quantities will denote vectors that lay in opposite
directions along the same line.

Newton’s Second Law in one dimension is:

F=ma (2.1.1)

Recall that acceleration is the first derivative of velocity v with respect to time and the sec-
ond derivative of displacement x with respect to time. To solve for the equations of motion,
we will think of (2.1.1) as a differential equation, by re-writing (2.1.1) in the following ways:

29



“Master Book File” — 2020/4/30 — 13:22 — page 30 — #42

30 B Classical Mechanics: A Computational Approach

2
F= mfle (2.1.2)
d
ji = md—: (2.1.3)
F= mvj—z (2.1.4)

Notice that each of the above equations is a differential equation which can be solved
once the net force F' acting on the particle is specified. Each of the above equations yields a
different equation of motion: (2.1.2) can be solved for z(t), (2.1.3) for v(t), (2.1.4) for v(x).
Equation (2.1.4) comes from the chain rule:

dv  dvdr  dv

at = " dwdt ~ " dn

Throughout the rest of this chapter, we will solve (2.1.1) for several different cases where

forces are constant (F' = Fy), time-dependent (F' = F(t)), velocity-dependent (F' = F(v)),

and position-dependent (F = F(z)). However, before solving (2.1.1), we will make a few
comments about differential equations in general.

(2.1.5)

2.2 ORDINARY DIFFERENTIAL EQUATIONS

Simply put, an ordinary differential equation (ODE) is an equation which contains the
derivative of a function. For example,

dr

dt
is a differential equation which says that x(t), the solution to the differential equation, is a
function whose first derivative is equal to 7. Of course we know that z(t) = 7t is a solution
that works. However, there are an infinite number of other solutions as well, since we can
add a constant to z(t) and still have a solution to our ODE. Hence, the so-called general
solution is x(t) = 7t 4 ¢, where ¢ is a constant. This differential equation is simple enough to
solve. However, most ODEs are not that simple, and many cannot be solved at all. Before
discussing how to solve an ODE, let’s first point out a few things about our example.

7 (2.2.1)

1. Equation (2.2.1) is called a first-order ODE, because the highest derivative in the
equation is a first derivative. In general, an n‘"-order ODE is an ODE whose highest
derivative is an n'" derivative.

2. The ordinary derivative implies that = is a function of only one variable ¢, which is
the variable of differentiation.

3. The number of arbitrary constants in the general solution of (2.2.1) is equal to the
order of the ODE.

To solve (2.2.1), we needed to separate the variables of the equation. Colloquially speaking,
this means getting all the terms with x on one side of the equation and all the terms that are
either constant or depend on ¢ on the other. This process is called separation of variables
and is performed by treating the derivative as a fraction, and multiplying both sides of
(2.2.1) by dt,



“Master Book File” — 2020/4/30 — 13:22 — page 31 — #43

Single-Particle Motion in One Dimension B 31

da =Tdt (2.2.2)
/da: :/7dt (2.2.3)
x=Tt+c (2.2.4)

To solve (2.2.1), we carried out the integral after separating out variables. Note that
both integrals would produce constants of integration, but since both are constants, we can
combine them into one arbitrary constant. You can double check the solution by computing
the derivative of 7t+ ¢, to check that it satisfies (2.2.1).

What happens in the case of second order ODEs? Second order ODEs are more common
in physics. There are many techniques to solve them, but we will demonstrate only one.
Consider the ODE,

d%x

dt?
Separation of variables does not make sense here, because we typically do not integrate
terms like d?z. However, we can define a new variable v, such that, v = dz/dt. Then (2.2.5)
becomes,

=7 (2.2.5)

dv

dt
which we know gives the answer v(t) = 7t + ¢1, where ¢; is the constant of integration.
However we want x(t), so we use v = dx/dt:

=7 (2.2.6)

d
= =Tt+a (2.2.7)
/dx—/ Tt+e1)d (2.2.8)
=3.5t2 + 1t + 2 (2.2.9)

where cg is the constant of integration obtained by performing the above integral. Hence,
we pick up an additional constant of integration in our solution, giving two arbitrary con-
stants for the solution of the second order ODE (2.2.5). Loosely speaking, we see that the
number of arbitrary constants in the solution of an n**-order ODE is equal to n, because
we need to do n integrations in order to solve the equation, and each integration produces
an arbitrary constant.

Next, we return to (2.2.1). Suppose (2.2.1) was an equation we wanted to use in order
to find the position of a particle as a function of time. The infinite number of solutions is
not helpful. Which solution describes the actual path taken by the particle? In order to
specify the particular solution for an ODE, we need to include initial conditions, the value
of our function at a particular time (normally at ¢ = 0). Suppose we know that at ¢t =0, the
particle is at a position, 2(0) = 3. Then we can solve for the arbitrary constant by inserting
the initial condition into our general solution,

2(0)=(7)(0)+c=3 (2.2.10)

which gives ¢ = 3. Our particular solution is then, z(t) = 7t +3. A different initial condition
will give a different particular solution. Now suppose we wanted to find a particular solution



“Master Book File” — 2020/4/30 — 13:22 — page 32 — #44

32 B Classical Mechanics: A Computational Approach

to (2.2.5), in that case one initial condition will not be enough because it will leave one
arbitrary constant. Hence, we will need to specify both x(¢) and dz/dt at a particular time
(usually t = 0). Suppose that x(0) =3 and v(0) = 1, where v = dz/dt. Then we have:

2(0) =3.5(0)%> +¢1 (0) + 2 =3 (2.2.11)
0(0) =7(0)+c; =1 (2.2.12)

where (2.2.12) is the derivative of the general solution evaluated at ¢ = 0. The result here
is that ¢; = 1 and ¢z = 3, and the particular solution is x(t) = 3.5t2 +-¢ + 3. In summary, in
order to solve for the particular solution of an n**-order ODE, we need n initial conditions.
In addition, we can also specify x using knowledge of the value of x at two different times,
as opposed to knowing initial values of x and its first derivative. In classical mechanics, it is
most common to know the initial conditions of the position and velocity. However, in other
fields, such as electromagnetism and thermodynamics, it is often more common to know the
value of a function, say the temperature, at two different locations. In this case, we have
what is known as a boundary value problem, and the conditions that provide the constants
of integration are known as boundary conditions.

There are many other properties of ODEs such as linear superposition, that we will
explore in this book as we need them. For now, we know enough about ODEs to get started.
Let’s get back to the physics.

2.3 CONSTANT FORCES

Consider the case where a constant net force, F' = Fy, acts on a particle constrained to move
along a line. In this case, Newton’s Second Law (2.1.1) gives:

dv o FO o

at  m
where a is a constant because Fy is constant. You may recall (2.3.1) from Example 1.1.
Equation (2.3.1) is an example of a first order differential equation. We can solve this
through the process of separation of variables and then integrating the resulting equation.
The first step in separating variables is to multiply both sides of the equation by dt:

(2.3.1)

dv = adt (2.3.2)
which can be integrated to yield,

v(t) z/adtzat+01 (2.3.3)

where c¢; is the constant of integration. The constant, ¢1, can be found using initial conditions
of v(to) = v, where vy is the initial velocity at the initial time tg. When ¢y =0, (2.3.3) gives
v(0) = ¢1 or ¢ = vg. Therefore, the solution to the differential equation, (2.3.1) is,

v(t) =vo +at. (2.3.4)

Before moving forward, we should mention that there is an alternate method for finding
(2.3.3), which can be found by explicitly inserting the initial and final conditions when
integrating (2.3.2):



“Master Book File” — 2020/4/30 — 13:22 — page 33 — #45

Single-Particle Motion in One Dimension B 33

v(t) t
/ dv’ :/ adt’ (2.3.5)
oh) to

v(t) —vg =a(t —tp) (2.3.6)

where we have introduced primes to the variables of integration in order to distinguish
them from the limits of integration. Notice that the lower limit in the left-hand side of
(2.3.5) corresponds to the value of v(t) when t = t(, the lower limit of the right-hand side of
(2.3.5), and with similar considerations for the upper limits. It is very important that the
limits match on both sides of the equation.

Next, we can get an equation for x(t) by writing v = dx/dt :
z—f = at+ vy, (2.3.7)
and separating variables we obtain:

z(t) t
/ dI/:/ (at’ +vo)dt’ (2.3.8)

0 to
Notice how all of the time-dependent and constant terms are on the same side of the
equation. If we had subtracted vg from both sides of the equation before integrating, we
would have dx —vg which does not make sense because f vg is meaningless without a variable
of integration. In this context, separation of variables always involves multiplication and
division, not addition and subtraction. Choosing tg = 0 and performing the integral results
in:

1
z(t) = §at2+vot+x0 (2.3.9)

Together, equations (2.3.4) and (2.3.9) are the only equations you need to know, in order
to solve for the position and velocity of a particle moving in one-dimension and experiencing
a constant net force.

Finally, if we want v(x) we can solve (2.1.4):

dv Fg
v =2 (2.3.10)
vdv =adz (2.3.11)
v xX
/ v'dv’ :a/ dx’ (2.3.12)
Vo Z0o
v? — ¢ =a(x —x0) (2.3.13)

where a = Fy/m was used in (2.3.11). We could have also obtained this result by elimi-
nating ¢ between equations (2.3.3) and (2.3.9). The box below summarizes all of the constant
force equations, sometimes called the Kinematic Equations. These are equations that you
should memorize.

Kinematic Equations (a=constant)

v(t) =vo+at (2.3.14)



“Master Book File” — 2020/4/30 — 13:22 — page 34 — #46

34 B Classical Mechanics: A Computational Approach

1
z(t) = T+ vot + iatz (2.3.15)
v(x)? =02 +2a(z —,) (2.3.16)
In the case of a freely falling particle near the surface of the Earth, we use a = —g =

—9.8m/s? (assuming “down” is in the negative direction), where g is the acceleration due
to gravity. The Kinematic Equations become:

v(t) =vp — gt (2.3.17)
1

y(t) =yo +vot — S gt> (2.3.18)

v(y)? =vj —29(y — o) (2.3.19)

We used y as the position variable, which is common when describing vertical motion.
Notice that these are not different equations from the Kinematic Equations, they are simply
the Kinematic Equations with a specific value of a. We now look at some well-known
examples of situations in which the acceleration of the system is constant.

Example 2.1: The Atwood machine

The Atwood machine consists of two masses m1,mo hanging over a pulley as shown in
Figure 2.1. Assume that mg > my. Find the acceleration a of the masses and the tension
of the string.

Solution:

We can derive an equation for the acceleration by using force analysis. If we consider
a massless, inextensible string and an ideal massless pulley, the only forces we have to
consider are: tension (7') and weight of the two masses (W1 = mig and Wy =mag ). The
tension acting on each mass will be the same, because the tension is constant throughout
the string. Because the string is inextensible, the magnitude of the acceleration of each
mass will also be the same although they’ll be in opposite directions.

To find the acceleration we need to consider the forces affecting each individual mass.
First, we need to define a frame of reference. In this case, we will choose +y is downwards
so that the heavier mass, mg, moves in a positive direction. Newton’s Second Law can be
used to derive a system of equations for the acceleration a.

Forces affecting m; : mig—T = —ma

Forces affecting mg : mog—T = maa

The upward motion of m; has been made explicit by including a minus sign on the
right-hand side of the equation describing the forces affecting mi. Adding the two previous
equations we obtain

mig+meg = —mia+moa (2.3.20)

and after solving for the acceleration:

mo —mq
mi+mo

(2.3.21)



“Master Book File” — 2020/4/30 — 13:22 — page 35 — #47

Single-Particle Motion in One Dimension B 35

Once a has been found, we can find the position z(t) and velocity v(t) of the masses
using (2.3.15) and (2.3.14). Note that for the position and velocity of m, we would need
to insert —a in the Kinematic Equations.

Figure 2.1: The free body diagrams of the two hanging masses of the Atwood machine.

To find the tension in the string, substitute (2.3.21) into, —mia = myg — T, which

results in: 5
mi11me9
T=|——"7> 2.3.22
(2 ) (2.3.22)

Of course we could have also substituted (2.3.21) into the equation describing the forces
acting on meo and we have obtained the same result for 7.

FExample 2.2: Motion on an inclined plane

The mass m shown in Figure 2.2 is placed on an inclined plane with angle 6. The
coefficient of friction between the mass and the plane is p.If the mass is released from rest,
find the position x(t), velocity v(t), and acceleration a.

Solution:

We will use the standard reference frame for inclined planes that you learned in your
introductory physics course; hence we define +x as downward, along the plane. The force
of friction is written as f = /N where N is the normal force between the mass and the
inclined plane.



“Master Book File” — 2020/4/30 — 13:22 — page 36 — #48

36 B Classical Mechanics: A Computational Approach

N

mgsin(e)
mgcos(0)

) ]

Figure 2.2: The forces on an incline plane.

The normal force here represents the force applied by the plane against the object
(and vice versa). The magnitude of the normal force N can be calculated from the free
body diagram, as shown in Figure 2.2, to be N = mgcosf, where g is the acceleration due
to gravity and 6 is the angle of the inclined surface measured from the horizontal. The
component of the weight W = mg which acts along the direction of the plane is again

found from the force diagram to be F' = mgsin6.

The total force along the x-axis (downward direction along the plane) is:

Fiotal = ma =mgsinf — f = mgsin@ — uymgcos

and by dividing with the mass m we find the constant acceleration:

a = gsinf — pgcosf

(2.3.23)

(2.3.24)

This acceleration can then be used in (2.3.15) and (2.3.14) to get z(¢) and v(¢), respec-

tively.

2.4 TIME-DEPENDENT FORCES

Now comnsider a case where a particle constrained to move along a line is experiencing
a net force F'(t) which is dependent on time. Time dependent forces arise in a variety of
applications, one common occurrence is when a sinusoidal external force acts on the system.
In the cases where the net force F' = F'(t), Newton’s Second Law 2.1.1 gives:

dv  F(t)

dt m
and by separating variables and integrating from t' =t, to t we find :

¢
17
t)—v(t=0)=— F(t')dt
o)t =0) = [ F0)
t'=tg
By using the initial conditions v(t = 0) = vp :
1 t
t) = — F(t')at'
v(t) =vo+— e (t)

Once we know v(t), we can find z(t) by integrating v = dx/dt and
conditions z(tg) = z, to obtain:

(2.4.1)

(2.4.2)

(2.4.3)

using the initial



“Master Book File” — 2020/4/30 — 13:22 — page 37 — #49

Single-Particle Motion in One Dimension B 37

t
A0 — s = /t RGr (2.4.4)

Next, we will demonstrate an example of how to find the equations of motion for a
particle experiencing a time-dependent force. We will demonstrate the solution both by-
hand and using the CAS Mathematica. Refer to Chapter 1 for comments on how to use
Mathematica to solve differential equations in closed form.

Exzample 2.3: A decreasing force, F(t)

The force acting on a mass m is decreasing with time according to F/(t) = Fo/(t> +1)
where t is the elapsed time. Find the position z(¢) and the velocity v(¢) with the initial
conditions z(0) = 29 =0 and v(0) = vo = 0.

Solution:
This is the case of a time dependent force F' = F(t), so we can use (2.4.3) with vg = 0:

1 [t 1 [t F Fy
t) = — Ft)dt' == dt = — tan~ ' (¢ 245
v(t) vt — s () o - tan () ( )

Does our v(t) make sense? To check, we ask what happens when ¢ — co? In the limit
of t - oo, FF — 0 and we would expect that v becomes constant. In our particular case,
as t — oo, tan~!(¢) — /2, and therefore, our solution v(t) follows our expectation of the
velocity approaching a constant. Next, we find z(t) using (2.4.4) with z¢ = 0:

t
z(t) — xo :/t v(t")dt (2.4.6)

/=0
E t

=2 tan~'(¢) at’ (2.4.7)
m Jy—o

:R (t tan™! (t) — 5n (& + 1)) (2.4.8)

In this case, as t — oo, we know that v — constant and therefore, we would expect z(t)
to continue to grow, which is exactly what our solution does! We can also obtain these
results and plot them by using the Mathematica commands DSolve and Plot, as shown
below. In Mathematica, a semi-colon at the end of a line means suppress the output.
Therefore, only lines without a semi-colon produce an output to the screen. The output of
the first line starting with ODFsolution is suppressed, while the output of the line starting
with position, is not. The output appears immediately below the line of code, and matches
the formulas above.



“Master Book File” — 2020/4/30 — 13:22 — page 38 — #50

38 B Classical Mechanics: A Computational Approach

ODEsolution = DSolve Hm xx'[t] == p%,x[O] ==0,2'[0] == O} ,x[t],t} ;

position = z[t]/.ODEsolution[[1]]

FO(ZtArcTan [t]—Log [1+t2} )
2m

OUTPUT:
velocity = DIposition, t]

OUTPUT: F0ArcTan(i]

FO=1m=1;

GraphicsGrid[{{Plot[position, {t,0,10},Frame — True,Axes — False, FrameLabel —

{“time, s”,“x, m”},BaseStyle — {FontSize — 24}], Plot[velocity, {¢,0,10},Frame —
True,Axes — False,FrameLabel — {“time, s”,“v, m/s”}, BaseStyle — {FontSize —

24}1}}]

12 1.4

b 012
E & £1.0
* 4 s 0.8

2 0.6}

o 04
0 2 4 6 8 10 0 2 4 6 8 10

time, s time, s

Notice that sometimes curly brackets (i.e. { }) are used in Mathematica, while other
times square brackets (i.e. []) are used. In Mathematica, square brackets are used to denote
the argument of a function or command. For example, we would write z(t) as a hand-written
solution to a differential equation. The notation x(¢) uses parentheses to denote the fact
that the variable ¢ is the argument of the function x. In Mathematica, we would write the
function as xz[t]. Notice, we used the notation z[t] in the command DSolve in order to tell
Mathematica that x is a function of ¢. Also notice that the arguments of commands are
also placed in square brackets. The command D has the arguments position and ¢ which
are inside square brackets. The D command takes a derivative of the first argument (in
this case, the equation stored in the variable position) with respect to the argument in
the second position (in this case, ¢). Curly brackets in Mathematica are generally used
to denote a range. Notice in the Plot command the second argument is {¢,0,10} which is
telling Mathematica to plot the function stored in the variable position as a function of time
(the ¢ in the first argument of the curly brackets) starting at ¢ = 0 (the second argument
in the curly brackets) and ending at ¢ = 10 (the third argument in the curly brackets).
Different programming languages use square brackets, curly brackets, and parentheses in
different ways. Mathematica uses parentheses mainly to group elements together (as you
would when hand writing mathematics), however Python uses parentheses for many of the
same things for which Mathematica uses square and curly brackets. Once one knows several
programming languages, it is common to get the usage of parentheses, curly brackets, and
square brackets mixed up!



“Master Book File” — 2020/4/30 — 13:22 — page 39 — #51

Single-Particle Motion in One Dimension B 39

2.5 AIR RESISTANCE AND VELOCITY-DEPENDENT FORCES

You may recall from your introductory physics course that when studying the motion of
a particle in free fall, air resistance was often ignored. As you may know, air resistance
depends on the velocity of the object moving through the air. Hence, air resistance is a
velocity-dependent force. Here we will learn how to address air resistance when describing
the motion of a particle. It should be noted however, that although we focus on air resistance
as an example of a velocity-dependent force, most of our comments will be applicable to
any velocity-dependent force.

When speaking about an object moving through the air, two forces are often described,
drag and lift. The drag force is the component of the air resistance which is in the opposite
direction of the object’s velocity (direction of motion). Lift forces are the component of the
air resistance which is perpendicular to the object’s motion. In this section, we will consider
cases where the lift is negligible. We will also only consider non-rotating bodies. A rotating
body moving through air will experience the Magnus effect where the spinning motion of
the object drags air faster on one side than the other. The resulting pressure difference on
either side of the object causes the object to curve away from its flight path. This is what
allows a baseball pitcher to throw a curve ball. There are many interesting videos online
which demonstrate the Magnus effect.

In general, the air resistance force studied in this chapter takes the mathematical form,

f=—f(u)v (2.5.1)

where the unit vector ¥ = v /v is along the direction of the object’s velocity (or motion) and
the minus sign is included to explicitly show that the direction of the air resistance force
is opposite of the direction of the velocity. The magnitude of the air resistance f(v) is a
function of velocity which generally takes the form,

f(v) = bv+cv? (2.5.2)
and therefore has both a linear and a quadratic component in v. For spheres in air the
values of the constants b and ¢ are [Taylor(2005)]:

b=1.6x10"*D N-s/m
¢=0.25D? N-s?/m?

where D is the diameter of the sphere in meters. Fortunately, one usually doesn’t need to
include both the linear and quadratic terms for air resistance. In order to determine which
term, linear or quadratic, is the most important in a given situation, one can compute the
ratio:

(2.5.3)

cv? 0.25D%9?
7T T 1.6x10-%Dv
Note that v should be in meters per second, and D in meters. If v >> 1, then the quadratic
term dominates and the linear term can be neglected. If v << 1, then the linear term
dominates and the quadratic term can be neglected. However, if v~ 1, then both the linear
and quadratic terms need to be included. So for a 0.22 m soccer ball, the quadratic term
dominates for speeds approximately greater than 0.003 m/s (or 3 mm/s), while for lower
speeds the linear term dominates. Both linear and quadratic terms would need to be included
in the air resistance formula if the soccer ball is traveling near 3 mm/s.
To obtain equations for position and velocity as functions of time, we will consider a
generic form for F'(v). Newton’s Second Law (2.1.1) gives:

=1.6x10Dv (2.5.4)



“Master Book File” — 2020/4/30 — 13:22 — page 40 — #52

40 W Classical Mechanics: A Computational Approach

dv _ F(v)

i 2.5.5
dt m ( )
Rearranging the above equation gives:
dv
dt =m—— 2.5.6

and by integrating from t' = t( to ¢ , and using the initial conditions v(tg) = vg we find :

v dv/

t—to=m
v =vq F(v/)

(2.5.7)

By solving (2.5.7), we can find v(t), the velocity as a function of time. Once we know
v(t), we can again use (2.4.4) to find x(¢) with the initial condition z(tg) = zo.
We can follow a similar procedure for finding v(x). Newton’s Second Law gives:

dv
—=F 2.5.8
mvt = () (258)
After rearranging, we obtain:
v ’U’d”l)/
T—Tog=m 2.5.9
0 v'=vg F<UI) ( )

Next, we will, show some examples involving velocity-dependent forces.

Example 2.4: Air resistance varying linearly with speed
The force of air resistance on a mass m depends linearly on the velocity v according
to F(v) = —bv. Find z(¢) and v(¢) with the initial conditions v(0) = vp and x(0) = xo.

Solution:
We use (2.5.7) to find x(¢) with tg = 0:

@ dv’ m [ dv m v’
= _ — —:——1 —_— 2.5.1
o=m | o 169 (#5.10)

Solving for v(t) we obtain:
v(t) =voe” m (2.5.11)
We also find x(t) from (2.4.4):
¢ / !/ ¢ —ﬂ /
x(t) —xo = v(t")dt' = voe ™ dt (2.5.12)
W=t

which gives:
2(t) =20+ =2 (1-e) (2.5.13)

Here is the solution using Mathematica:



“Master Book File” — 2020/4/30 — 13:22 — page 41 — #53

Single-Particle Motion in One Dimension B 41

ODEsolution = DSolve[{m x 2" [t] == —b*2'[t], 2[0] == x0,2'[0] == vo}, z[t],1];

position = Collect[z[t]/.ODEsolution[[1]], {vo,m}]

bt

l—e™ m

OUTPUT: mVO(b> +x0

velocity = D|position, t]

OUTPUT: e~ mvo

vo=1;x0=0m=1;b=1;

GraphicsGrid[{{Plot[position, {t,0,10},Frame — True, Axes — False, FrameLabel —
{“time, 8”,“x, m”}, BaseStyle — {FontSize — 24}, PlotRange — All],

Plot[velocity, {t,0,10},Frame — True, Axes — False, FrameLabel —
{“time, s”,“v, m/s”}, BaseStyle — {FontSize — 24}, PlotRange — All]}}]

1.0¢ 1 1.0p
0.8} 0.8}
g 0.6 g 0.6}
X 0.4} > 0.4;
0.2} 0.2}
0.0/ ) ) ) ) ) 0.0f, ) : . - 3
0 2 4 6 8 10 0 2 4 6 8 10
time, s time, s

The Collect command gathers together terms that involve the same powers of the
objects in the curly brackets (second argument of Collect). It is a useful command for
simplifying algebraic terms and for identifying coefficients.

Example 2.5: Air resistance in the presence of gravity
Consider the case of a falling object near the surface of the Earth. Suppose in this case,
the air resistance is linear. Then the net force on the falling body depends on the velocity
v according to
F(v)=—-bv+mg (2.5.14)

where we have defined +y to be vertically downward so that the body’s motion is in
the positive direction. Find the displacement y(t) and the velocity v(t), with the initial
conditions v(0) = vp and y(0) =yp -

Solution:
We use (2.5.7) to find v(t) with 9 = 0:

v ol mg _ g
t:m/ e (,,};—) (2.5.15)
v/ =y, —OV' +mg b - — Vo

Note that we have factored out the constant b from the denominator of the integral
before performing the integration.
Solving for v(t) we obtain:



“Master Book File” — 2020/4/30 — 13:22 — page 42 — #54 ?

42 W Classical Mechanics: A Computational Approach

bt

u(t) = % + (vo - %) e~ m (2.5.16)
We also find y(t) from (2.4.4):
¢ ¢ mg mg bt’
y(t) —yo = / v(t')dt = / [— + (vo - —) e_W} at’ (2.5.17)
=t =t b b
which gives after integrating:
2
mg m°g muvg\ _bt
£ = g, — 20 m 2.5.1
o) =+ e (L -0 ) o (25.18)
When ¢ — 0o we can substitute e~ — 0 in (2.5.16) to obtain the terminal velocity:

m
Uterminal = Tg (2519)

Hence, our solution matches the expected physics. As the object falls, its velocity
increases due to the force of gravity. However, at some point, the object is moving fast
enough that the drag force equals that of the object’s weight. At that point, the net force
on the object is zero, and the velocity remains at a constant value called the terminal
velocity, Vterminal for the duration of its fall.

Figure 2.3 shows the plots of z(t) and v(¢) found in Example 2.5. Notice that both plots
show the velocity of the object coming to a constant value as the object falls for a long
period of time.

1200} 50
1000} 40
g 800 @ 30
. 600F E
* 400 > 20
200} 10

O 0

0 5 10 15 20 25 30 0 5 10 15 20 25 30

time, s t,s

Figure 2.3: The plots of z(t) and v(¢) from Example 2.5 using Mathematica and the numer-
ical values m =1.0 kg, b=0.2 Ns/m, 0 =0 m and vg =0 m/s.

Example 2.6: Air resistance proportional to v?

A more realistic air resistance force is proportional to the square of the velocity v
according to F(v) = —cv? +myg. Find z(t) and v(t) with the initial conditions v(0) =0 and
z(0)=0.

Solution:
The terminal velocity is found in this case by setting F' = —cvferminal +mg =0:
mg
Vterminal = T (2520)



“Master Book File” — 2020/4/30 — 13:22 — page 43 — #55

Single-Particle Motion in One Dimension B 43

For simplicity’s sake, we will denote vterminal as v¢. Next, we use (2.5.7) to find v(t) by
integrating from the initial velocity v, to the final velocity v :

t ”Uf dUl
=m = ————
/ —cv’2 +mg

m/ & (2.5.21)

1/Yf
= tanh~ (L
CU¢ ( (7 )

where we used integral tables to perform the integration (Note that a CAS could be
used as well, see the code below). We can then solve for vy to yield:

v¢(t) = v tanh [%t} (2.5.22)
m
We also find z(¢) from (2.4.4):
¢ ¢
2(t) — 20 = / v(t') dt’ = / vy tanh [%t’} dt’ (2.5.23)
0 0 e
which with x¢g = 0 gives:
m
x(t) = = In (cosh ( t)) (2.5.24)

In the code below, we used Mathematica to perform some of the calculus needed to
solve the problem.

integral = Assuming [(Vf > 0)&& (vt > 0)&& (vl < vt), Integrate [m, {v,0 Vf}”

ArcTanh [ :,’—,f]
vt

OUTPUT:

velocity = vt*Tanh [M} ;

m
position = Integrate[velocity, t]

mLog [Cosh[ ctvt ]]
c

OUTPUT:
m=1;9g=9.8;¢=0.2;vt = Sqrt[m*g/c];

GraphicsGrid[{{Plot[position, {¢,0,5},Frame — True,Axes — False, FrameLabel —
{“time, s”,“x, m”}, BaseStyle — {FontSize — 20}, PlotRange — All],

Plot[velocity, {t,0,5}, Frame — True, Axes — False, FrameLabel —
{“time, s”,“v, m/s”}, BaseStyle — {FontSize — 20}, PlotRange — All]}}]




“Master Book File” — 2020/4/30 — 13:22 — page 44 — #56

44 W Classical Mechanics: A Computational Approach

v, m/s
© = N W d O N

time, s time, s

In Example 2.6, we used the command Integrate to perform the integrals. When you
perform integrals you may not always think about the signs of variables. For example
you know that the terminal velocity is positive. However, Mathematica (and other CAS
programs) makes no such assumptions. In order to perform the integral, and get the above
result, we needed to tell Mathematica that both the final velocity (vf in the code), and
terminal velocity, (vt in the code) are positive, and that vf < vt . Physically, this is making
the assumptions: m,g,k,t,v > 0 and mg > kv? (i.e. the air resistance can not exceed the
weight W =myg). The symbol && represents the logical operator AND. These assumptions
are provided in the Assuming command in the above code. So by placing the command
Integrate inside the Assuming command, we are telling Mathematica to integrate with the
listed assumptions. Notice that in the first line of code, the command Integrate is used with a
second argument {v,0,v f}, while the position calculation has the simple second argument of
t. In the first case, we are asking Mathematica to perform a definite integral with variable
of integration, v, and with a lower limit of v =0 and an upper limit of v =vf. In the
second case, we are asking Mathematica to perform an indefinite integral with variable of
integration t.

A comparison between the velocity of the falling body in the cases of linear air resistance
F(v) = —bv+mg and quadratic air resistance F'(v) = —cv? +myg is shown in Figure 2.4
where m = 1.0kg, b= 0.2Ns/m, and ¢ = 0.2Ns?/m. The velocity on the y-axis has been
normalized by dividing with the corresponding terminal velocity. Notice that the quadratic
air resistance (dashed line) leads to the object obtaining terminal velocity in a significantly
shorter time than linear air resistance (solid line). This is not surprising, the magnitude of
the quadratic drag force will be higher than the linear force for a given velocity, v.

10 ]
08 | ]
@ i
E o6f | 1
z {
2 i '
S04 —— Linear ]
E /
S e Quadratic
0.2f | 1
0.0f 1
0 5 10 15 20

time

Figure 2.4: Comparison of the velocity of falling body in the presence of linear and quadratic
air resistance. The two curves have been scaled, so that they produce the same result as

t — o0.



“Master Book File” — 2020/4/30 — 13:22 — page 45 — #57

Single-Particle Motion in One Dimension B 45

2.6 POSITION-DEPENDENT FORCES

In the cases where the force is a function of the position F' = F(z), we can use Newton’s
Second Law in the form

F(x) :mvj—z (2.6.1)

By separating the variables v and z, and using the initial conditions x = xg and v = vg
when ¢t =0 , we obtain:

v / / Y !/ / 1 2 1 2
/ F(z")dx z/ mo'dv’ = —mv* — —mug (2.6.2)
. ” 2 2

x0

Solving for the velocity v(z) as a function of the position x:

v(z) = %\//J; F(a')dx' + %mv% (2.6.3)

By substituting v = dx/dt, separating the variables, and integrating with the initial
condition x = x, when t = t,, we obtain the relationship between position  and time ¢:

PR ® dz’
‘T2 o \/fx F(x')dx + Lmo?
o 2 0

(2.6.4)

After performing the integral in equation (2.6.4), one would then try to invert this
formula to find x(¢), something that is not always easy or possible to do. Often, one relies
on computer methods in such cases.

The next example will involve one of the most important problems in all of classical
mechanics, simple harmonic motion (SHM). In fact, we will devote a whole chapter to it! As
we will see in a later chapter, SHM is a common model used for small amplitude oscillations.
Although SHM is often thought of as a “mass on a spring,” it is also a useful model for
other small amplitude oscillations including pendulums, small amplitude water waves, and
loudspeakers-to name a few. Besides presenting the SHM, the next example also includes
a demonstration of using Python to find and plot the solution to a differential equation
in closed form. Python’s SymPy package was used in Chapter 1, to solve a first order
differential equation. Here we will demonstrate the solution of a second order differential
equation using SymPy.

Example 2.7: Simple harmonic motion

A mass m is under the influence of a position dependent force, F'= F'(z) = —kx, which
is proportional to the distance z the mass is from an equilibrium located at z = 0. The
mathematical form of F' is, of course, the well-known Hooke’s Law for springs. Find z(t)
and v(t) with the initial conditions v(0) =0 and z(0) = zg # 0 at ¢ = 0.

Solution:



“Master Book File” — 2020/4/30 — 13:22 — page 46 — #58

46 M Classical Mechanics: A Computational Approach

In this case (2.6.3) becomes:

2 r 1 2 /1
UZE\/_/@ kx’dz’—i—imvozaﬂik (22 —22) (2.6.5)

which gives the velocity v(z) as a function of the position x. Next we will find z(¢) by

using (2.6.4):
L \/% {sm—l <x—“’;> - ﬂ (2.6.6)

o

/“7 dx’ m . _1<x>
= ————=4/—sin —
w0 /K (22 — 2) k xo

or after some rearranging:

(t) = zosin (@H%) = g cos (@t) (2.6.7)

The result is that the mass oscillates about the equilibrium position zg. Hence we find

that the natural frequency w of the oscillator is w = %

Algorithm 1 is the solution using the SymPy library in Python. Also note that while
not commented-out, the lines starting with the word OUTPUT: are not code, and are
included only to show the output from the line above. Do not include such lines in your

own code.

The code used to solve Example 2.7 is similar to what we used in Chapter 1. After
importing everything in the SymPy library (the * means “everything”), we specify that the
variables m, k, t are real and positive. Python needs to be told which variables are to be
treated as symbols and which variables are to be treated as functions. Next, the differential
equation is defined using the variable diffeq. The Eq command creates an equation with
the first argument as the left-hand side of the equation and the second argument as the
right-hand side. Hence, that line of code is the same as writing, mZ + kx = 0. Note that the
command diff, represents the derivative of x with respect to time (two ¢’s in the argument
means second derivative). The next line solves the differential equation using dsolve. At
the time of this writing, the dsolve command in Python cannot include initial conditions,
unless one wants to obtain power series solutions to the differential equation. Therefore,
the next seven lines of code insert the initial conditions. To solve for the initial conditions,
we need to first isolate the right-hand side of the solution. Next, we identify CI1 and C2
as symbols, even though they appear in the SymPy-produced solution. The lines starting
with ic1 and ic2 apply the initial conditions by setting x(0) = 20 and (0) = 0, respectively.
Then the resulting two equations are solved for the two unknowns, and the solution is stored
in solution_ics. Finally, we obtain the particular solution by substituting the values of C1
and C2, stored in solution_ics, into the general solution.

Like in Chapter 1, the code needed to solve Example 2.7 in Python is more complicated
than that used by Mathematica to solve previous examples in this chapter. Python needs
to be told which terms are symbols for manipulation and which terms are functions. In
addition, SymPy’s dsolve currently has no way of including initial conditions into the solu-
tion of the ODE, so more than half of the lines in Example 2.7’s algorithm are used to find
the arbitrary constants and plug them into the solution. As we’ve seen with Mathematica,
finding the constants using initial conditions is easy by using its DSolve command.



“Master Book File” — 2020/4/30 — 13:22 — page 47 — #59

Single-Particle Motion in One Dimension B 47

from sympy import =

X Function (’x")

t = Symbol(”t”,real=True, positive=True)
k = Symbol(”k”,real=True, positive=True)
m = Symbol(”m”,real=True, positive=True)

diffeq = Eq(mx(t). diff(t, t) + kxx(t), 0)
solution = dsolve(diffeq ,x(t))
print (solution .rhs)

OUTPUT: Cl#sin (sqrt (k)*t/sqrt(m)) + C2xcos(sqrt (k)xt/sqrt (m))

equation = solution.rhs

CI,C2 = symbols (’C1,C27)

xo = symbols(’x0’)

icl = Eq(equation.subs(t, 0) o)
ic2 = Eq(equation.diff(t) subs(t
solution_ics = solve ([icl,ic2],
print (solution_ics)

; ), 0)
(C1, C2))
OUTPUT: {C1: 0, C2: xo}

particular = simplify (equation.subs(solution_ics))
print (particular)

OUTPUT: xoxcos(sqrt(k)*t/sqrt(m))

Algorithm 1: The Python code for Example 2.7.




“Master Book File” — 2020/4/30 — 13:22 — page 48 — #60

48 M Classical Mechanics: A Computational Approach

We didn’t need to specify that ¢, m, and k are real and positive. If we had only defined
those variables as symbols, Python would have still solved the differential equation. However,
Python would produce a cosh function instead of the cos function. The argument of the cosh
function produced has a negative sign under a radical. Using the relationship, cosh(iz) =
cos(x) we would get the same answer we obtained by hand and by specifying the nature of
the variables. It is not unusual to have to do additional algebra on results provided by CAS
algorithms, in order to get a result that is useful. This is an additional reason not to forget
your math skills and not to rely solely on the computer!

Not all differential equations can be easily solved in closed form and some can not be
solved in closed form at all. In cases where closed-form solutions are not possible to obtain,
we can solve the differential equation using a numerical method. In the next section, we will
discuss a simple method of numerically solving ordinary differential equations.

2.7 NUMERICAL SOLUTIONS OF DIFFERENTIAL EQUATIONS

Sometimes differential equations are either very difficult to solve in closed form, or have
no closed-form solution. In these cases, we rely on numerical algorithms. The truth is that
as a physicist, you will likely run into more differential equations that require numerical
solutions than those that can be solved by hand! Therefore, it is important to understand
how to solve a differential equation using numerical methods.

Consider an ordinary differential equation (ODE) of the following form:

dx
I = f(z) (2.7.1)

where f(z) is a well-behaved function of x. Note that here f(x) is an arbitrary function of
position, not the force acting on the system. What we are about to demonstrate works on
differential equations encountered in any field, not just physics. To solve (2.7.1) numerically,
we need to approximate the derivative on the left-hand side. The approximation of the
derivative is done by removing the limit in Newton’s definition of the derivative:

dr _w(t+dt)—z(t)
dt dt '
If the value of dt is small enough, the right-hand side of the above equation will give a
good approximation of the derivative. We can then think of solving the differential equation
by finding the current value of x = (¢t +dt) by using past values, x(¢). This process is called
Euler’s method for solving differential equations. By inserting (2.7.2) into (2.7.1), we obtain
the formula for Euler’s method:

(2.7.2)

w(t+dt) = x(t)+dt f(z(t)). (2.7.3)

We can interpret (2.7.3) as using the tangent line at the current value of x, (1), in order
to approximate the next value of x, x(t+dt). Over a short distance dt, we can expect that
this local linear approximation to be a good method of finding x(t + dt) from z(t).

To implement Euler’s algorithm, follow these steps in your program of choice:

1. Define dt to be a value for the time interval small enough to produce the correct
solution.

2. Define an empty array x for the function which is the solution to the ODE. Some
programming languages require you to define the length, or number of elements in
the array, when you define the array. If that is the case, define the length of z to be



“Master Book File” — 2020/4/30 — 13:22 — page 49 — #61

Single-Particle Motion in One Dimension B 49

equal to tyay/dt (rounded up to the nearest integer) where t,,4, is the largest value
of ¢ for which you want to know xz(t).

3. Loop over an index ¢ in order to enter values in the array using:

wli] = afi — 1]+ dt * f(2[i]) (2.7.4)

The i*® element of the array z, denoted by z[i], contains the value of the function z at
t = idt. How do you know if the value of dt that you chose gives a good solution? It
is sometimes helpful to run your code with a first guess of dt, and then repeat for a
smaller value of dt. If the solution doesn’t change using the new value of dt, then that
is a good sign that you have a good value of dt and an accurate representation of the
solution. Of course it is not a proof, but the method can work well as you try to get a
sense of the solution to a differential equation. It is worth mentioning here that the er-
rors in numerical methods such as the Euler method are well known, and although we
will not go into them here, they are covered in typical numerical analysis texts such as
[Press et al.(2007)Press, Teukolsky, Vetterling, and Flannery].

You might wonder, why not just use a very small value say, dt = 0.0000017 One reason is
that if you did that, then to find the solution out to t = 1, the loop would take 10° iterations!
However a more important reason is that if dt is very small, then global truncation errors
become an issue for your solution. Local truncation error is the error that occurs at each
iteration of a numerical method. Global truncation error is the cumulative error caused by
many iterations. Hence, small values of dt both increase computing time and can introduce
more error. Furthermore, the Euler method can be unstable, meaning that the numerical
solution can grow very large when the exact solution does not. If you can not obtain a
solution with reasonable accuracy using Euler’s method, then you will need to investigate
higher order numerical solvers such as the 4th order Runge-Kutta method, which we will
discuss in a later chapter. Even more sophisticated methods involve an adaptive value of
dt.

You might be wondering how to solve second order ordinary differential equations
(ODE), which are more common in mechanics due to Newton’s Second Law. To solve a
second order ODE, we break it up into two first order ODEs and use the Euler method for
each one. Consider the ODE resulting from Newton’s Second Law in the previous example
of linear air resistance:

ma =—bv+mg (2.7.5)
d’x dx
—_p= 2.7.
m— 7 +mg (2.7.6)

where we have written a = d2x/dt? and v = dx/dt. To create two first order ODEs from
(2.7.6), we treat the velocity as a separate variable:

dx
— 2.7.
at 277)

then (2.7.6) becomes:
dv b
—=g—— 2.7.8
i (2.7.8)

The resulting equations for the Euler method are therefore:

z(t+dt) =z(t) +dtv(t)

o(t+dt) —v(t) +dt (g _ :L”(t)> (2.7.9)



“Master Book File” — 2020/4/30 — 13:22 — page 50 — #62

50 B Classical Mechanics: A Computational Approach

In Algorithm 2 we use Python to write an Euler’s method algorithm which solves Ex-
ample 2.5. In the next few paragraphs, we will explain Algorithm 2 line-by-line.

The Python library NumPy is imported and used for convenience, although it is not
necessary. We also import and use the Python library Matplotlib which is useful for plotting
functions. Matplotlib is also used here to export the graphs of z(t) and v(t) to a file.
Exporting output (either arrays or images) to a file is useful, so that the output of the
program can be used in other places without having to rerun the original program. After
importing the libraries, we then define variables in the next block of code. Notice that we
are choosing the step size to be dt =0.01 and we want to integrate equations from ¢ =0 to
t =30.0 (tmaz). The variable num_steps = 3000 is the number of steps of size 0.01 between
0 and 30 and will be used to determine the length of arrays.

After defining variables in Algorithm 2, we defined the second term in the right-hand side
of each equation in (2.7.9) as the functions dzdt and dvdt, respectively. Although it is not
necessary to define those functions, it makes the lines in the upcoming for-loop cleaner and
easier to read. Readability is important when writing algorithms, so that others can follow
your work and so that you can follow your own work, if you need to reuse the algorithm
later.

Next, we need to define the arrays x and v which will contain our solutions z(t) and
v(t), respectively. We need the arrays to have enough elements to cover the time range from
t =0 to 30. We create the arrays using the command zeros from the NumPy library. The np
in front of the command zeros tells the Python interpreter that the command zeros comes
from the NumPy library. The command zeros creates an array in which all elements are 0.
The length of the array is determined by the argument of the command, in this case, the
arrays ¢ and v have a length num_steps + 1. This may seems strange, but we can explain
it using Python’s method for indexing arrays. Python begins counting using 0, so the first
element of an array has an index of 0 (note that some languages, like Mathematica, gives
the first element of an array the index of 1). There are 3000 steps of size 0.01 between ¢ =0
and t = 30 and we need one more additional step for the time ¢ = 0. Hence, in order to span
the time from 0 to 30 in steps of 0.01, we need 3001 elements in our arrays. By initially
assigning all elements the value of zero, we have automatically included the initial condition
as the first element of each array.

Next, we use a for-loop to perform Euler’s method. The for command tells Python to
start a for-loop. The contents of the for-loop (the two-indented lines below the for statement)
are repeated multiple times. The statement, for i in range(1,num_steps+1), tells the Python
interpreter that the value of ¢ starts at ¢ = 1. With each iteration of the loop, the value of
1 increases by 1. The loop stops when ¢ = num_steps. The range command produces a list
of values from 1 up to, but not including, num_steps + 1. Therefore, the loop is iterated
num_step times. In each iteration of the loop, we calculate a new element of each array z
and v. Hence, in the first iteration of the loop ¢ =1 and we compute z[1] and v[1], and the
value of i is changed to 2. In the next iteration, i = 2 and we find z[2] and v[2] and the
value of i is changed to 3. This process continues until ¢ has the value num_steps + 1. Note
that the value of ¢ is increased after z[i] and v[i] are computed, so once ¢ = num_steps + 1
the loop stops without computing x/num_steps +1] and v/num_steps + 1J.

In order to plot the functions x and v we need to tell Python to which time each array
element corresponds. The time variable contains a list of times from 0 to 30 in steps of 0.01
using the command arange, which is similar to the for command, ends one step before the
second argument, hence the tmax + dt term. The algorithm ends by creating the necessary
plots and saving them as an encapsulated postscript file.



“Master Book File” — 2020/4/30 — 13:22 — page 51 — #63

Single-Particle Motion in One Dimension B 51

import numpy as np
import matplotlib.pyplot as plt

#define constants, time step size, and integration time
m, k, g =1.0, 0.2, 9.8

dt = 0.01
tmax = 30.0
num_steps = int (tmax/dt)

#define functions
def dxdt(vel):
return vel

def dvdt(vel):
return g — k/m x vel

#define initial conditions and arrays
X = np.zeros (num-_steps+1)
v = np.zeros (num_steps+1)

#perform the Euler step algorithm

for i in range(l,num_steps+1):
x[i] = x[1—1] + dt * dxdt(v[i—-1])
v[i] = v[i—-1] + dt * dvdt(v[i-1])

time = np.arange (0,tmax+dt,dt)

fig , axes = plt.subplots(1l, 2, figsize=(10,4))
axes [0]. plot (time ,x)

axes [0].set_xlabel ("time, s”)

axes [0].set_ylabel ("x, m”)

axes [1]. plot (time,v)

axes [1].set_xlabel ("time, s”)

axes [1].set_ylabel ("v, m/s”)
fig .savefig(”linear_air_resistance.eps”)

Algorithm 2: The solution to Example 2.5 using a Euler’s method algorithm.




“Master Book File” — 2020/4/30 — 13:22 — page 52 — #64

52 B Classical Mechanics: A Computational Approach

The output of Algorithm 2 is shown in Figure 2.5. Notice that the results obtained from
the Python program look similar to the results obtained from Mathematica. That is a good
sign! When we plot both results on the same graph, we find that the graphs are actually
identical. When developing your own numerical analysis programs, such as the Euler method
algorithm, it is often wise to check the results of your new algorithm with another algorithm
that you suspect works fine. In this case, the Mathematica DSolve command produced the
same analytical form as we obtained by hand. Therefore, we verified Mathematica’s result
with our own calculation, and then verified our Euler method result (found using Python)
with that of Mathematica’s result. Ultimately, we can be confident that our Euler method
program works well, at least in the case of this one particular ODE. Furthermore, our Euler
method’s success here makes us more confident of the results we would obtain by using our
algorithm on new problems.

1200 501

1000 40

_ 800 « 30/
. 6001 €

x > 20

400
200 | 104
0 0
0 10 20 30 0 10 20 30
time. s time, s

Figure 2.5: The result of Algorithm 2

The ability to solve differential equations numerically allows you to address interesting
problems that you could not do by hand. The next example involves three different forces
acting on a system, it demonstrates the power of Euler’s method.

Exzample 2.8: Nonlinear forces

Consider a particle with mass m = 1 kg, which is experiencing a Hooke’s Law restoring
force, F'(z) = —kz, a quadratic drag, F(v) = —cv?, and a sinusoidal external driving force,
F(t) = Acos(wt), where k = 3N/m, ¢ = 0.5Ns?/m, w = 1.0 rad/s, and A = 1.0 N. The
resulting equation of motion can be found using Newton’s Second Law:

mi + kx + ci® = Acos(wt) (2.7.10)
Next, we insert the given values for each parameter to obtain:

i+ 324 0.50% = cos(t) (2.7.11)

If the particle’s initial position and velocity is z(0) = 0.9m and v(0) = 0.0m/s, respec-
tively, find the particle’s position and velocity as a function of time.

Solution:



