
i
i

“Master˙Book˙File” — 2020/4/30 — 13:22 — page 107 — #119 i
i

i
i

i
i

C H A P T E R 4

Momentum, Angular
Momentum, and
Multi-Particle Systems

In this chapter we focus on two important physical quantities linear momentum and an-
gular momentum. Under certain conditions, as explained in this chapter, momentum and
angular momentum are conserved quantities, meaning that their values are constant during
a physical process. The conservation of momentum or angular momentum can then be used
to solve problems by comparing the state of a system before a physical process to the state
of that same system after this process. In this chapter, we will also study multi-particle sys-
tems, continuous mass distributions (i.e. systems that are not point particles), and center
of mass. We develop relationships between the total momentum of a system of particles to
the momentum of the system’s center of mass. We also develop a relationship between the
angular momentum of a system of particles to angular momentum of the system’s center of
mass. We will show that these relationships will also hold for continuous mass distributions.
Finally, we discuss numerical integration techniques which will be useful when finding a
system’s center of mass.

4.1 CONSERVATION OF MOMENTUM AND NEWTON’S THIRD LAW
Recall that Newton’s Third Law states that if Particle 2 exerts a force F21 on Particle 1,
then Particle 1 exerts a force F12 on Particle 2 such that:

F12 =−F21 (4.1.1)

Newton’s Third Law will lead us to an interesting result. Consider two particles interacting
via a force, which we will refer to as an “internal force”. For example, if our two objects
are the Earth and Moon, their gravitational interaction would be the internal force. Fur-
thermore, assume that each particle is experiencing an external force due to other bodies
outside of the system. In the case of the Earth and the Moon, that could be the Sun’s
gravitational force, a body outside the Earth-Moon system. The net force F1 on particle 1
is then:

F1 = F21 +Fext
1 (4.1.2)

107



i
i

“Master˙Book˙File” — 2020/4/30 — 13:22 — page 108 — #120 i
i

i
i

i
i

108 � Classical Mechanics: A Computational Approach

where F21 is the force on particle 1 exerted by particle 2 (the “internal force”), and Fext
1 is

the net external force acting on particle 1. Similarly, particle 2 experiences a net force:

F2 = F12 +Fext
2 (4.1.3)

Let p1 and p2 represent the linear momenta of the two particles, then Newton’s Second
Law states that

ṗ1 = F1 = F21 +Fext
1 (4.1.4)

and
ṗ2 = F2 = F12 +Fext

2 (4.1.5)
Now, we define the total momentum vector as P = p1 +p2, to be the sum of the momenta
of each particle. Then,

Ṗ = ṗ1 + ṗ2 = Fext
1 +Fext

2 =Fext (4.1.6)
Hence, we see that if there are no total net external forces Fext = Fext

1 +Fext
2 then Ṗ = 0,

or to put it another way:

The Law of Conservation of Linear Momentum

If Fext = 0, then P = constant.

The total momentum of a system is conserved if no external forces act on that system. This
is an important law in physics, one that we will use to solve problems in cases where the
external forces add to zero.
Example 4.1: Inelastic collision between two bodies

Consider two objects with masses m1 and m2 and moving with velocities v1 and v2
respectively. The two masses collide and stick together, moving away from the collision as
one object with a velocity v. Ignoring external forces occurring during the collision find
the velocity of the objects immediately after the collision.

Solution:
This type of collision is called a perfectly inelastic collision because the two bodies

are stuck together after the collision. Because we can ignore the external forces during
the collision, we can use conservation of momentum to solve this problem. The total
momentum before the collision is:

Pinitial =m1v1 +m2v2

and the total momentum after the collision is:

Pfinal = (m1 +m2)v

Note that because the two objects stick together after the collision, both masses have the
same velocity, hence the right-hand side of Pfinal above. Conservation of momentum tells
us that Pinitial = Pfinal and therefore:

v = m1v1 +m2v2
m1 +m2

Notice that the final velocity is the weighted average of the initial velocities, where the
masses of each object serve as the weights for the average. While this problem may seem
to be simple, it is an important application of the conservation of momentum; it is used



i
i

“Master˙Book˙File” — 2020/4/30 — 13:22 — page 109 — #121 i
i

i
i

i
i

Momentum, Angular Momentum, and Multi-Particle Systems � 109

to solve problems in nuclear physics, astrophysics, and accident reconstruction–to name a
few.

Example 4.2: Elastic collision between two bodies
A particle of mass m1 = 0.10 kg moving with a velocity of v0 = 10.0 m/s î collides

with another particle which is at rest and has a mass m2 = 0.20 kg. After the collision,
each particle moves as shown in the figure below, at an angle θ = π/6 rad. The collision is
elastic, meaning that the kinetic energy of each particle is conserved. Find the speed v1 of
mass m1, and the speed v2 and angle φ for mass m2 after the collision.

m1

v0

m2

m1

m2

v1

v2

θ
φ

Solution:
You may remember from your introductory physics course that in an elastic collision

both the total momentum mv and total kinetic energy 1/2mv2 are conserved. We will
discuss kinetic energy more in depth in the next chapter. For now, your knowledge from
your introductory physics course will suffice to solve this problem.

Only mass m1 is moving before the collision, and the problem states that the velocity
is in the x-direction. Therefore,

pinitial =m1v0 î

The momentum after the collision involves both particles. By analyzing the velocity vectors
v1 and v2 into their x and y components. We can write:

pfinal = (m1v1 cosθ+m2v2 cosφ) î+ (m1v1 sinθ−m2v2 sinφ) ĵ

Using conservation of momentum, we equate pinitial = pfinal. In addition, because the
collision is elastic, we also equate the initial and final kinetic energies. Together, the two
conservation laws lead to three equations:

m1v0 =m1v1 cosθ+m2v2 cosφ
0 =m1v1 sinθ−m2v2 sinφ

1
2m1v

2
0 = 1

2m1v
2
1 + 1

2m2v
2
2

The top two equations represent the total momentum in the x and y directions respectively,
and the final equation represents the conservation of kinetic energy. In addition, we know
that v0 = 10.0 m/s, m1 = 0.10 kg, and m2 = 0.20 kg. As you might imagine, this problem
can involve a lot of algebra. However, a CAS will be able to assist us with that algebra.
Below is an example of code written in Mathematica, which can be used to solve this
problem.



i
i

“Master˙Book˙File” — 2020/4/30 — 13:22 — page 110 — #122 i
i

i
i

i
i

110 � Classical Mechanics: A Computational Approach

θ = π/6;
v0 = 10;
m1 = 0.1;
m2 = 0.2;

Solve[{m1*v0 == m1*v1*Cos[θ] + m2*v2*Cos[φ],m1*v1*Sin[θ] ==
m2*v2*Sin[φ],0.5*m1*v0∧2 == 0.5*m1*v1*∧2 + 0.5*m2*v2∧2},{v1,v2,φ}]

OUTPUT: Solve::ifun: Inverse functions are being used by Solve, so some solutions
may not be found; use Reduce for complete solution information.

{{v1 → −3.56822,v2 → −6.6056,φ → 3.00613},{v1 → −3.56822,v2 → 6.6056,φ →
−0.135459},{v1 → 9.34172,v2 → −2.52311,φ → −1.95894},{v1 → 9.34172,v2 →
2.52311,φ→ 1.18266}}

We begin the program by defining our known variables, the final direction θ of mass
m1, the initial velocity of m1(v0 ), and the values of the masses m1 and m2. The Solve
command gives a warning that some solutions may not be found by Mathematica. This
is not uncommon when using a CAS to solve transcendental equations. However, four
solutions are found. The first three solutions include negative values for v1 and v2. These
are non-physical results because v1 and v2 are speeds, and speed is the positive magnitude
of the velocity vector. The fourth solution found by Mathematica contains all positive
values, which is in agreement with the problem’s diagram. Finally, we need to remember
that Mathematica, like any calculator, is not respecting significant figures. Therefore, our
final answer is: v1 = 9.3 m/s, v2 = 2.5 m/s, and φ = 1.2 rad. It should be noted, that
although the warning suggests using the command Reduce in this case, the set of solutions
produced by Reduce includes the ones found by Solve.

As we have said before, the availability of CAS programs is not a substitute for knowing
how to do algebra. The reader should verify the solution by hand.

Next, we study the case where three or more particles are involved. The questions arises:
Do we still expect momentum to be conserved when there are many interacting particles?
Let’s begin by examining the net force acting on a collection of N interacting particles. The
net force on the ith particle is:

Fi = Fext
i +

∑
j 6=i

Fji (4.1.7)

where as previously stated Fext
i is the net external force acting on the ith particle, and Fji

is the force of interaction between particle j and particle i. The summation term in the
equation above denotes the net internal force acting on the particle. The net force acting on
the system would then be obtained by summing the equation above over the N particles:

F =
N∑
i=1

Fi =
N∑
i=1

Fext
i +

N∑
i=1

∑
j 6=i

Fji (4.1.8)

Equation (4.1.8) can be re-written as:

F =
N∑
i=1

Fext
i +

N∑
i=1

∑
j>i

(Fij +Fji) (4.1.9)



i
i

“Master˙Book˙File” — 2020/4/30 — 13:22 — page 111 — #123 i
i

i
i

i
i

Momentum, Angular Momentum, and Multi-Particle Systems � 111

If this rewriting is not clear to you, set N = 3 and write out the terms in (4.1.8), you will
find that you can rewrite the sum as a collection of two terms, as shown above. Newton’s
Third Law tells us that Fji =−Fij , and therefore the second term in the previous equation
is zero leading to:

Ṗ = F =
N∑
i=1

Fext
i (4.1.10)

The Law of Conservation of Linear Momentum for a System of N Particles

If
N∑
i=1

Fext
i = 0 then P = constant (4.1.11)

In other words, the momentum of the system of particles is conserved if there are no external
forces acting on the system, like in the case of two-particle systems.

4.2 ROCKETS
A practical example of conservation of momentum is rocket propulsion. The rocket has a
challenge of moving forward without pushing against something. For example, an automobile
moves forward by turning its wheels so that it pushes against the ground. However, a rocket
in space has nothing to push against. Instead, the rocket solves this problem by ejecting
mass, similar to the recoil of a gun. Before a gun is fired, the bullet and the gun are at rest.
However, once the bullet is fired, it is propelled forward. In order for the total momentum to
be conserved, the gun has to move in the direction opposite that of the bullet. The velocities
of the gun and the bullet are, of course, very different because the gun has more mass than
the bullet does.

We begin by considering a rocket flying horizontally and assume that the rocket is not
experiencing any external forces. The rocket has momentum p(t) =mv at time t, where m
and v are the mass and velocity of the rocket. The momentum of the rocket is measured
by an observer in a reference frame that is at rest relative to the rocket. A short time later
denoted by t+ dt, the rocket has expelled a small amount of mass dm′, which is moving
at a speed u relative to the rocket, as illustrated in Figure 4.1. The speed u is sometimes
called the exhaust speed. The ejection of mass leads to an increase in the rocket’s speed by
a small amount dv, as measured in the rest frame. Therefore, the momentum of the system
immediately after the mass was ejected is:

p(t+dt) = (m−dm′)(v+dv) +dm′ (v−u) (4.2.1)

where the second term above is the momentum of the ejected mass relative to the rest
frame.

dm'

u

v+dv
m-dm'

Figure 4.1: A rocket after ejecting a small amount of mass dm′ at a speed relative to the
rocket, u.



i
i

“Master˙Book˙File” — 2020/4/30 — 13:22 — page 112 — #124 i
i

i
i

i
i

112 � Classical Mechanics: A Computational Approach

Applying conservation of momentum:

p(t) = p(t+dt) (4.2.2)
mv = (m−dm′)(v+dv) +dm′ (v−u) (4.2.3)

mdv = udm′ (4.2.4)
mdv = −udm (4.2.5)

where the last line was obtained by noting that the change in mass of the rocket is
dm=−dm′. Furthermore, we ignored the term dm′ dv because both dm′ and dv are small,
therefore their product is negligible. Dividing both sides by dt we obtain:

m v̇ =−u ṁ (4.2.6)

The left hand side of (4.2.6) is Newton’s Second Law (F = ma), and therefore we see
that the net force acting on the rocket is equal to −u ṁ, which is sometimes called the
thrust. Note that ṁ < 0, so the thrust is positive (and points to the right in Figure 4.1).
We can also write (4.2.6) as:

dv =−udm
m

(4.2.7)

This equation can be integrated by assuming a constant u. If at t= 0 the rocket’s speed is
v0 and its mass is m0, we obtain:

v−v0 = u ln
(m0
m

)
(4.2.8)

which gives the velocity of the rocket as a function of its mass m. Equation (4.2.8) tells us
that in order to make a rocket go as fast as possible, engineers need to create rockets with
large exhaust speed u, and with a large initial to final mass ratio m0/m. The final speed of
the rocket will be obtained once all of the fuel is burned. Rockets with multiple stages that
are ejected can help maximize m0/m, so that the rocket can achieve even greater speeds.

Next, we study the case of a rocket moving vertically, experiencing the force of gravity.
Our goal is to find an equation which describes the velocity of the rocket. We will use a
coordinate system where the positive y-direction is upward, in the opposite direction of the
force of gravity. In this case, gravity is an external force acting on the rocket, and therefore:

dp

dt
=−mg (4.2.9)

dp=−mgdt (4.2.10)
p(t+dt)−p(t) =−mgdt (4.2.11)

mdv+udm=−mgdt (4.2.12)

m
dv

dt
+u

dm

dt
=−mg (4.2.13)

In order to obtain an equation for v, we introduce the constant burn rate α:

α=−dm
dt

(4.2.14)

Using our definition of burn rate, the last line of (4.2.13) becomes:



i
i

“Master˙Book˙File” — 2020/4/30 — 13:22 — page 113 — #125 i
i

i
i

i
i

Momentum, Angular Momentum, and Multi-Particle Systems � 113

dv

dt
=−g+ α

m
u (4.2.15)

dv =
(
−g+ αu

m

)
dt (4.2.16)

dv =
( g
α
− u

m

)
dm (4.2.17)

Integrating the above equation using v(0) = v0 and m(0) =m0 produces:

v−v0 = g

α
(m−m0) +u ln

(m0
m

)
(4.2.18)

This equation gives the velocity of the rocket as a function of mass m when the burn rate α
is constant. Sometimes (4.2.18) is rewritten by integrating the definition of the burn rate:
m−m0 =−αt. In that case, (4.2.18) becomes:

v−v0 =−gt+u ln
(m0
m

)
(4.2.19)

The advantage of using (4.2.19) is that one can see two terms which affect the rocket’s
motion. The first term, −gt, is the standard kinematics term for a particle in free fall, and
represents the effect of gravity on the velocity. The second term, u ln(m0/m), is the same
term we obtained for the horizontal motion of the rocket and represents the effect of thrust
on the rocket’s velocity.

4.3 CENTER OF MASS
Problems involving momentum often involve multiple objects, such as in the case of col-
lisions. In situations where the system of interest involves multiple particles or the object
under study is not a point particle, the concept of center of mass becomes useful. Let us
begin by considering a system of N point particles. The location R of the center of mass
for a system of particles is defined as:

Center of Mass for a System of Discrete Particles

R = 1
M

N∑
i=1

miri (4.3.1)

X = 1
M

N∑
i=1

mixi Y = 1
M

N∑
i=1

miyi Z = 1
M

N∑
i=1

mizi (4.3.2)

Here ri is the position of the ith particle which has mass mi. The total mass of the system
is M =

∑
mi. Equation (4.3.1) is actually three equations, one for each coordinate of R.

For example, in Cartesian coordinates the position of the ith particle is ri = xi î+yiĵ+ zik̂
and we can write R =X î+Y ĵ+Zk̂.

The center of mass is the weighted average location of the mass in the system, with
the weights being the masses mi. It is a weighted average, similar to how grades are often
calculated in a course where maybe 50% of your final grade may be based on mid-semester
exams, 20% on homework assignments, and 30% on a final examination. The location of
the center of mass will be closer to the heavier particles. The next example illustrates this
point.



i
i

“Master˙Book˙File” — 2020/4/30 — 13:22 — page 114 — #126 i
i

i
i

i
i

114 � Classical Mechanics: A Computational Approach

Example 4.3: Center of mass of the Earth-Sun system
Compute the location of the center of mass of the Earth-Sun system.

Solution:
We choose a coordinate system such that the center of the Sun is at the origin. We will

also approximate the Earth’s orbit as circular, and assume that the plane of the Earth’s
orbit is constant. Therefore, we can work in polar coordinates and only need to find the
distance of the center of mass of the system from the Sun’s center. The distance between
the Earth and the Sun is approximately 1.5× 1011 m, and the masses of the Earth and
Sun are 5.9×1024 kg and 2.0×1030 kg, respectively. Therefore, in our coordinate system,
rSun = 0 and rEarth = 1.5×1011 m. Inserting these numbers into (4.3.1) gives:

(mEarth)(rEarth)
mSun +mEarth

=
(
5.9×1024 kg

)(
1.5×1011 m

)
5.9×1024 kg + 2.0×1030 kg = 4.6×105 m.

The radius of the Sun is approximately 7.0×108 m. Therefore, the center of mass of the
Earth-Sun system is well inside the Sun, and practically coincides with the center of the
Sun.

If we want to extend (4.3.1) to continuous distributions of mass, i.e. objects that are not
well-described as point particles, then we need to make some changes. One way to approach
a continuous mass distribution is by thinking of it as a collection of infinitesimal masses
dm. Then the sum over discrete particles in (4.3.1) becomes an integral over infinitesimal
mass elements dm. The center of mass equations then become:

Center of Mass for a Continuous Mass Distribution

R = 1
M

∫
rdm M =

∫
dm (4.3.3)

X = 1
M

∫
xdm Y = 1

M

∫
ydm Z = 1

M

∫
zdm (4.3.4)

In the equations above, the total mass is found from M =
∫
dm, and like (4.3.1) equation

(4.3.3) actually consists of three equations, one for each coordinate. Typically, one does not
integrate (4.3.3) using the mass. Most often the integration is done over the length, area or
volume of the object, when the object does not have a uniform density.

The following box summarizes how to calculate the total mass M by using the density
of the object in 1D, 2D, and 3D situations. In the case of one-dimensional objects, we use a
linear mass density λ (mass per unit length in units of kg/m). In the case of two-dimensional
objects, we use a surface density σ (mass per unit area in units of kg/m2), and for three-
dimensional objects we use the familiar volume density ρ (mass per unit volume in units of
kg/m3).

Evaluating the Mass dm for 1D, 2D and 3D Objects

dm= λdx M =
∫
λdx (4.3.5)

dm= σdA M =
∫
σdA (4.3.6)



i
i

“Master˙Book˙File” — 2020/4/30 — 13:22 — page 115 — #127 i
i

i
i

i
i

Momentum, Angular Momentum, and Multi-Particle Systems � 115

dm= ρdV M =
∫
ρdV (4.3.7)

The next example will demonstrate how to apply (4.3.3) to a continuous mass distribu-
tion.

Example 4.4: Center of mass of an isosceles triangle
A lamina of uniform mass per unit area σ, is shaped into an isosceles triangle shown

below. The triangle has two sides of length a and the base has length
√

2a. Find the center
of mass of this triangular lamina.

x

y

aa
dm

2a

dy

dx

Solution:
First note that due to the symmetry of the triangle, the center of mass lies along

the y-axis. Computing the center of mass of a mass distribution involves identifying two
components. The first component to identify is the mass element dm, shown in the diagram
of the triangle. Cartesian coordinates are a natural choice of coordinates for this problem.
Therefore, dm= σdxdy will be used for the mass element.

The second component needed to find the center of mass are the limits of the integral in
(4.3.3). The limits of the integral range over the size of the object. We included a horizontal
gray strip near the top of the triangle to illustrate that the width of the triangle varies
with the height, with the strip becoming narrower as it moves up the triangle. The right
side of the strip is bound by the line y = a/

√
2−x and the left side is bound by the line

y = a/
√

2+x, because the triangle has a height a/
√

2. Therefore, we can consider the left
end of the strip to be at x= y−a/

√
2, and the right end to be at x= a/

√
2−y.

The y-coordinate of the center of mass can then be found by computing Y =
1/M

∫
ydm:



i
i

“Master˙Book˙File” — 2020/4/30 — 13:22 — page 116 — #128 i
i

i
i

i
i

116 � Classical Mechanics: A Computational Approach

Y = 1
M

∫ y=a/
√

2

y=0

∫ a/
√

2−y

x=y−a/
√

2
yσdxdy

= σ

M

∫ a/
√

2

0
yx

∣∣∣∣∣
a/
√

2−y

y−a/
√

2

dy

= σ

M

∫ a/
√

2

0
2y
(
a√
2
−y
)
dy

= σ

M

(
ay2
√

2
− 2y3

3

)∣∣∣∣∣
a/
√

2

0

= a3

6
√

2
σ

M

To finish the problem, we need to find the total mass M .

M =
∫
dm=

∫ y=a/
√

2

y=0

∫ a/
√

2−y

x=y−a/
√

2
σdxdy = σ

∫ a/
√

2

0
2
(
a√
2
−y
)
dy = σa2

2

By using the value for M found above we find that:

Y = a

3
√

2
We can use a CAS like Mathematica to evaluate the integrals, even if the limits are not

constant. Below is an example of how to use Mathematica to solve the problem. Note that
we use the command /. which means replace. The line Y /. m → M asks Mathematica
to take the values stored as M (a2σ/2) and insert that where the letter m appears in the
expression stored in Y (a3σ/6m

√
2).

Y = Integrate
[
σ∗y
m ,

{
y,0, a√2

}
,
{
x,y− a√

2 ,
a√
2 −y

}]
OUTPUT: a3σ

6
√

2m

M = Integrate
[
σ,
{
y,0, a√2

}
,
{
x,y− a√

2 ,
a√
2 −y

}]
OUTPUT: a

2σ
2

Y /.m→M

OUTPUT: a
3
√

2

Example 4.5: The center of mass of a solid cone.
A cone of uniform density ρ is shown in the figure below. The cone has a radius of a

at the top and a height h. Compute the center of mass of the cone.



i
i

“Master˙Book˙File” — 2020/4/30 — 13:22 — page 117 — #129 i
i

i
i

i
i

Momentum, Angular Momentum, and Multi-Particle Systems � 117

x

y

z
a

h

Solution:
To solve this problem, we first need to identify a coordinate system. A cone can be

naturally described in cylindrical coordinates. Therefore we use dm= ρdV = ρrdrdθdz. By
symmetry, the center of mass is along the z−axis. The θ coordinate ranges from 0 to 2π
and the z coordinate ranges from 0 to h. However, the radius of the cone depends on the
height of the mass element above the xy−plane. The equation of the edge of the cone in
the yz−plane in the figure is r= az/h, so that the radius r ranges from 0 to az/h. Putting
all of this together,

Z = 1
M

∫ h

z=0

∫ 2π

θ=0

∫ az/h

r=0
zρrdrdθdz

= 2πρ
M

∫ h

0
z
r2

2

∣∣∣∣∣
az/h

0

dz

= 2πρa2

2h2M

∫ h

0
z3dz = πρa2h2

4M
Solving for the total mass M :

M =
∫ h

0

∫ 2π

0

∫ az/h

0
ρrdrdθdz

= 2πρ
∫ h

0

r2

2

∣∣∣∣∣
az/h

0

dz

= πρa2

h2

∫ h

0
z2dz = πρa2h

3

Finally, inserting M into the result for Z, we get:

Z = 3
4h

Again, we can perform the triple integration in Mathematica as follows.



i
i

“Master˙Book˙File” — 2020/4/30 — 13:22 — page 118 — #130 i
i

i
i

i
i

118 � Classical Mechanics: A Computational Approach

Z = Integrate
[ρ∗z∗r

m ,{θ,0,2π},{z,0,h},{r,0,az/h}
]

OUTPUT: a
2h2πρ
4m

M = Integrate[ρ ∗ r,{θ,0,2π},{z,0,h},{r,0,az/h}]

OUTPUT: 1
3a

2hπρ

Z/.m→M

OUTPUT: 3h
4

Notice that in order to perform the triple integral in cylindrical coordinates, we needed
to explicitly include the equation for r = az/h in the argument of the Integrate command.

4.4 NUMERICAL INTEGRATION AND THE CENTER OF MASS
We will sometimes need to use numerical integration techniques when finding the center
of mass of objects that are irregularly shaped, or have complicated density functions. In
this section we will present some basic numerical integration techniques and apply them to
problems involving center of mass.

4.4.1 Trapezoidal Rule
The most basic numerical integration algorithm is called the trapezoidal rule. As the name
suggests, the trapezoidal rule approximates the area under the curve by using a single
trapezoid as shown in Figure 4.2.

x

f(x)

a

f(a)
f(b)

b
Figure 4.2: The area under the curve f(x) between x = a and x = b can be approximated
using the trapezoidal rule, which estimates the area using the dashed trapezoid shown in
the figure.

The trapezoidal area under the curve between the points x = a and x = b is found by
taking the sum of the triangle and rectangle shown in Figure 4.2:



i
i

“Master˙Book˙File” — 2020/4/30 — 13:22 — page 119 — #131 i
i

i
i

i
i

Momentum, Angular Momentum, and Multi-Particle Systems � 119

∫ b

a
f(x)dx= (b−a)f(a) + 1/2(b−a)(f(b)−f(a)) +O

(
(b−a)3f ′′

)
(4.4.1)

= b−a
2 [f(b)−f(a)] +O

(
(b−a)3f ′′

)
(4.4.2)

where the error term O
(
(b−a)3f ′′

)
is not included in calculations. The f ′′ in the term is

the second derivative of f(x) evaluated at a point between x= a and x= b that maximizes
the second derivative. This is done to give an upper bound on the error. As expected, the
trapezoidal rule is not a preferred algorithm when it comes to calculating integrals, because
the area of a more complicated function may not be well-approximated by a single trapezoid.
However, the trapezoidal rule is the basis of other algorithms, hence it is important to know.

4.4.2 Simpson’s Rule
Simpson’s rule has two advantages over the trapezoid rule. First, it breaks up the range of
the integral into more pieces. Second, it replaces the straight-line top of the trapezoid with
a quadratic polynomial. In this subsection, we will forego the derivation of Simpson’s rule,
and simply present its formula. Simpson’s rule approximates the integral∫ x2

x0

f(x′)dx′ (4.4.3)

by sampling the function f(x) at three points x0, x1, and x2, equally spaced by a distance
h. The formula for Simpson’s rule is:∫ x2

x0

f(x′)dx′ = h

3 [f (x0) + 4f (x1) +f (x2)] +O
(
h5f (4)(x′)

)
(4.4.4)

where h= x2−x1 = x1−x0 and x1 = (x0 +x2)/2. The last term in (4.4.4) is the remainder
(or error) term and is not included in calculations. The fourth-order derivative is evaluated
at some value in the interval [x0,x2]. While Simpson’s rule divides the area under f(x) into
more segments than the trapezoidal rule, even more segments are often required. In those
cases, the extended Simpson’s rule is needed.

The extended Simpson’s rule breaks the interval up into N equal size divisions using the
formula:

∫ xN

x1

f(x′)dx′ = h

3 (f1 + 4f2 + 2f3 + 4f4 + · · ·+ 2fN−2 + 4fN−1 +fN ) +O

(
1
N4

)
(4.4.5)

where fi = f(xi), xi = x1 + ih, and h = (xN − x0)/N . The error term at the end
of the extended Simpson’s rule is again not included in calculations. The mate-
rial included in this section demonstrates only two techniques for numerical inte-
gration. For more information and more techniques, the interested reader should see
[Press et al.(2007)Press, Teukolsky, Vetterling, and Flannery].

In order to implement the extended Simpson’s rule, follow these steps:

1. Define the function to be integrated.

2. Define the lower and upper limits of the integral (a and b) and the stepsize h.



i
i

“Master˙Book˙File” — 2020/4/30 — 13:22 — page 120 — #132 i
i

i
i

i
i

120 � Classical Mechanics: A Computational Approach

3. Create an array whose elements are the terms in the sum of the right-hand side of
(4.4.5).

(a) Define the first element of the array to be f(a), and the last element to be f(b).
(b) Define the other elements as follows: the elements with an even index i are

evaluated using the expression 4f(a+ ih), and elements with an odd index i are
evaluated using the expression 2f(a+ ih).

4. Sum the array and multiply the result by h/3.

Algorithm 3 uses Python to demonstrate these three different algorithms: the trapezoidal
rule, the simple Simpson’s rule, and the extended Simpson’s rules, for this simple integral:∫ 3

0

(
x2 + 2x+ 3

)
dx= 27 (4.4.6)

In Algorithm 3 we changed some notation for simplicity, and instead of using an array
for the extended Simpson’s rule, we used a for-loop to demonstrate an alternative method.
The variables a and b are the lower and upper limits of integration, respectively. Recall that
lines which begin with # are comments and are not executed by the Python interpreter.
Also recall that lines beginning with the word OUTPUT show the output of the code, and
are not part of the code. Because we are going to need to evaluate f(x) = x2 +2x+3 many
times, we begin the program by defining the function being integrated. Notice that the
trapezoidal and basic Simpson’s rules are simple enough to perform in one or two lines of
code each. Furthermore, we included the print command to show how formatting can be
done in Python.

The calculation of the extended Simpson’s rule is more involved than the other two
methods. The coefficients used in the extended Simpson’s rule depend on the index of each
term in the right-hand side of (4.4.5). The coefficient of fi is 4 when i is even, and is 2 when
i is odd, except for i= 1 and i=N . In order to handle these dependencies, we used the if
and elif conditional statements. The if statement tests whether or not a condition is true
and if so, the indented line is executed.

The first if statement tests to see if i = 1 or i = N . If so, then the term hf(x)/3 is
added to the sum. Notice that the variable extended contains the sum of the terms on the
right-hand side of (4.4.5), and that the command += adds to and overwrites the variable
extended. If i 6= 1 or N , then the next conditional statement is evaluated.

The next conditional statement is elif, or “else-if”, which tests to see if i is even by
calculating i modulo 2. In Python, the “%” symbol is used for the modulo calculation.
The elif statement provides an additional conditional statement to test after the first if
statement, and is useful when there are multiple possible outcomes for a conditional (in this
case i can be even, odd, 1, or N). Finally, if none of the above conditional statements return
true, then i must be odd. The else conditional statement tells Python what to execute if
no other prior conditionals are true; in this case the term 4

3hf(x) is added to the sum.
Notice that the trapezoidal rule performs poorly in our example. However, the basic

Simpson’s rule (using two divisions) works better than the extended Simpson’s rule which
uses 10,000 divisions. This is a good example of higher order calculations not always per-
forming better than lower order ones. You should experiment with the number of divisions
used in Algorithm 3 to find how the accuracy of the calculation changes with the number
of divisions, N .

Next we will demonstrate how to use numerical integration algorithms to obtain the
center of mass of continuous mass distributions. In the following example, we will use



i
i

“Master˙Book˙File” — 2020/4/30 — 13:22 — page 121 — #133 i
i

i
i

i
i

Momentum, Angular Momentum, and Multi-Particle Systems � 121

de f f ( x ) :
r e turn x∗∗2 + 2∗x + 3

a = 0
b = 3

#trapezo id r u l e
t rapezo id = ( f (b)− f ( a ) ) ∗ ( b−a ) / 2 . 0
p r i n t (”The t rapezo id r e s u l t i s : { : . 5 f }” . format ( t rapezo id ) )
OUTPUT: The t rapezo id r e s u l t i s : 22 .50000

#simpon ’ s r u l e
c = ( a+b)/2
h = b − c
simpson = h∗( f ( a ) / 3 . 0 + 4∗ f ( c )/3.0+ f (b ) / 3 . 0 )
p r i n t (”The Simpson r e s u l t i s : { : . 5 f }” . format ( simpson ) )
OUTPUT: The Simpson r e s u l t i s : 27 .00000

#extended simpson ’ s r u l e
N = 10000 #number o f s t ep s

extended = 0
h = (b−a )/ (N−1) #need N s t ep s s t a r t i n g at an index o f 0
f o r i in range (0 ,N) :

x = a + i ∗h
i f i == 0 or i == N−1:

extended += h∗ f ( x ) / 3 . 0
e l i f i % 2 == 0 :

extended+=2.0∗h∗ f ( x ) / 3 . 0
e l s e :

extended+=4.0∗h∗ f ( x ) / 3 . 0

p r i n t (”The extended Simpson r e s u l t i s : { : . 5 f }” . format ( extended ) )
OUPUT: The extended Simpson r e s u l t i s : 26 .99820

Algorithm 3: Examples of the trapezoidal and Simpson’s rule in Python.



i
i

“Master˙Book˙File” — 2020/4/30 — 13:22 — page 122 — #134 i
i

i
i

i
i

122 � Classical Mechanics: A Computational Approach

Mathematica’s built-in numerical integration routine NIntegrate, and Python’s numerical
integration routine nquad from the SciPy library.

Example 4.6: The center of mass of a non-uniform isosceles triangle
Consider the triangle in Example 4.3, but now with a non-uniform density σ = 2y,

where the constant has units that produce a density measured in kg/m2. Compute the
center of mass for the triangle with a= 1 m.

Solution:
In this case, the solution is very similar to that of Example 4.4, but now the triangle

has a non-uniform density. The limits of integration are the same, with a= 1. However, dm
is changed due to the non-uniform density. In this case, dm = σdxdy = 2ydxdy. Because
the density changes only in the y-direction, we still expect that the x-coordinate of the
center of mass is zero. The integrals we need to solve are:

Y = 1
M

∫ y=a/
√

2

y=0

∫ a/
√

2−y

x=y−a/
√

2
2y2dxdy

M =
∫ y=a/

√
2

y=0

∫ a/
√

2−y

x=y−a/
√

2
2ydxdy

First, we use Mathematica’s NIntegrate command to solve these integrals. NIntegrate
uses an adaptive algorithm, which recursively subdivides the interval of integration as
needed, instead of choosing the number of divisions ahead of time (as done in the extended
Simpson’s rule). This can be advantageous when the function to be integrated changes
rapidly over some intervals while remaining nearly constant over others. Notice that in the
Mathematica program, we included the result for X to show that it is zero.

a= 1.0;
mass = NIntegrate

[
2∗y,

{
y,0,a

/√
2
}
,
{
x,y−a

/√
2 ,a

/√
2 −y

}]
;

Y = Integrate
[
2∗y2,

{
y,0,a

/√
2
}
,
{
x,y−a

/√
2 ,a

/√
2 −y

}]/
mass

OUTPUT: 0.353553

X = Integrate
[
2∗y ∗x,

{
y,0,a

/√
2
}
,
{
x,y−a

/√
2 ,a

/√
2 −y

}]/
mass

OUTPUT: 0.
Next we perform the integration using the numerical integration routine,

nquad, from SciPy’s integrate library. The command nquad uses the com-
mand quad over multiple variables of integration. The command quad also
comes from SciPy’s integrate library, and uses a FORTRAN 77 library called
QUADPACK[Piessens et al.(1983)Piessens, Doncker-Kapenga, Überhuber, and Kahaner]
to evaluate an integral. The code to perform the integration is shown in Algorithm 2.

Notice that we can include the bounds as a function; this allows us to use the non-
constant limits of integration necessary to describe the sides of the triangle. In addition
to finding Y , we also calculated X to show that X = 0, as expected.



i
i

“Master˙Book˙File” — 2020/4/30 — 13:22 — page 123 — #135 i
i

i
i

i
i

Momentum, Angular Momentum, and Multi-Particle Systems � 123

from sc ipy import i n t e g r a t e
import numpy as np

a = 1 .0

de f sigma (x , y ) :
r e turn 2 .0∗ y

de f fx (x , y ) :
r e turn x∗ sigma (x , y )

de f fy (x , y ) :
r e turn y∗ sigma (x , y )

de f y bounds ( ) :
r e turn [ 0 , 1/ np . s q r t ( 2 . 0 ) ]

de f x bounds ( y ) :
r e turn [ y−1/np . s q r t ( 2 . 0 ) , 1 / np . s q r t (2.0)−y ]

Y = i n t e g r a t e . nquad ( fy , [ x bounds , y bounds ] ) [ 0 ]
X = i n t e g r a t e . nquad ( fx , [ x bounds , y bounds ] ) [ 0 ]
mass = i n t e g r a t e . nquad ( sigma , [ x bounds , y bounds ] ) [ 0 ]

p r i n t ( ’ The x−coord inate i s : ’+ s t r (X/mass ) )
p r i n t ( ’ The y−coord inate i s : ’+ s t r (Y/mass ) )

OUTPUT
The x−coord inate i s : 0 . 0
The y−coord inate i s : 0 .35355339059327384

Algorithm 4: Example of center of mass calculation in Python.

4.5 MOMENTUM OF A SYSTEM OF MULTIPLE PARTICLES
Next, consider a system of N point particles with a total mass M . We begin by calculating
the net force acting on the whole system. We know from Section 4.1 that the internal forces
between particles cancel out, and that the net force acting on the system is the sum of
external forces. The net force F acting on the particles is:

F =
N∑
i=1

mir̈i = d2

dt2

N∑
i=1

miri = d2

dt2
MR =MR̈ (4.5.1)

where we used the definition of the center of mass from (4.3.1). Therefore, the system of
particles moves like a single particle of mass M , acted upon by the external forces. We can
also compute the net momentum of the system of particles:

P =
N∑
i=1

pi =
N∑
i=1

miṙi = d

dt

N∑
i=1

miri = d

dt
MR =MṘ (4.5.2)


