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Preface

WHY DID WE WRITE THIS BOOK?
The use of computers to solve problems has become a fundamental and critical skill in all
scientific fields. This book is our attempt to merge instruction in computation and classical
mechanics into a single presentation, where computer programming and computer algebra
systems are thought of as simply one more tool to use for problem solving.

Alongside instruction in classical mechanics, we provide instruction in using computers
to solve physics problems. Where relevant, we discuss how various algorithms work, such as
the fourth-order Runge Kutta method, by providing a type of “pseudo code” that outlines
how algorithms can be implemented. Our goal was to write a book that provides concrete
examples of how to implement computer programming to solve physics problems. In order
to provide such examples, we use Python and Mathematica. However, we believe that this
book can be used with any programming language. For example, if a student wants to
solve a differential equation using the language R with the Euler method described in
Chapter 2, then the student could follow our pseudo code and create their own algorithm,
by performing an internet search for “Euler method R,” or searching “how to numerically
solve a differential equation in R.”

Why did we choose to include both Python and Mathematica? Physicists need many dif-
ferent computational tools to solve problems. Python is a traditional scripted programming
language that many students learn in computer science courses. In addition, there are many
freely available websites which provide instruction on Python. Python is easy to learn, free,
and has become a regularly-used programming language in a variety of fields. In addition,
when libraries such as Numpy are used, Python code executes fast, and algorithms written
in Python can quickly and efficiently solve the problems presented in this book.

Now you may wonder if Python is such a powerful tool, why also include Mathematica?
Mathematica is a powerful computer algebra system. Like Python it is easy to learn, but
Mathematica can handle complex algebraic manipulations better than Python. Further-
more, Mathematica often requires fewer lines of coding than Python, because of its rich
set of commands. A command like NDSolve in Mathematica runs in the background many
lines of code, which the user need not see or access. By presenting a variety of tools, we are
hoping that students will be able to choose the best tool for solving a particular problem.
Sometimes a computer algebra system is the better tool, while other times writing your own
script in Python is the better choice. We discuss the differences in computer programming
languages more thoroughly in Chapter 1.

As we wrote the programs in Python or Mathematica to solve the physics prob-
lems, we tended towards clarity over efficiency. You will certainly find more efficient
ways of solving the various example problems in this book. However, we believe that
it is much more beneficial for the student to include a few more lines of code for
the purpose of clarity, rather than trying to combine multiple lines for a more ele-
gant algorithm. Solving the problems with algorithms that they develop themselves is
a beneficial exercise for students and is highly recommended. One learns physics by
solving problems. The authors encourage the reader to examine other texts such as

xiii
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[de Lange and Pierrus(2010), Taylor(2005), Morin(2008), Thornton and Marion(2004)] for
additional problems. These texts approach classical mechanics in different ways, and it is
beneficial to see multiple presentations of the same topic.

Technology has often disrupted the status quo on how things are done. When pocket
calculators were first introduced, people were afraid that it would ruin students’ ability to do
math. However a 2003 study found that “students’ operational skills and problem solving
skills improved when calculators were an integral part of instruction” [Ellington(2003)].
With further advances in technology, one can ask whether the use of computer algebra
systems (CAS) will damage a student’s ability to solve physics problems. A 2008 dissertation
[Tokpah(2008)] showed that “students using CAS tend to perform better than students
taught using non-CAS instruction” when learning mathematics. However, we believe that
the use of computers to assist, for example, in algebraic manipulations, will greatly benefit
physics students. Long and involved algebraic manipulation is rarely insightful in terms of
understanding the underlying physics. When a student is allowed to offload tedious algebraic
manipulations to a computer, this student can then focus on higher-level mathematics, such
as analyzing the problem using limits, in order to better develop a physical intuition of what
the equations are describing.

This book is for students who are taking a semester of classical mechanics, following
a full course in introductory physics. The prerequisites for this book are two semesters of
introductory physics and two semesters of calculus. Despite the title of the book, a semester
of computer science is not needed (but would be helpful) to start reading this book.

A NOTE TO THE STUDENTS
To the students using this book, we say, “Don’t feel overwhelmed!” We understand physics is
hard, and now we are asking you to learn physics, mathematics, and programming. Just like
you have learned math along the way of learning physics, you can learn programming that
way, too. We would argue that learning programming, at least for solving physics problems,
is easier than learning the math! Programming is challenging at first. The more you do it,
the better you will be at it and the more fun your experience will be.

Programming will change the way you think about problems, since writing a program
requires you to think procedurally. This will certainly improve your problem-solving skills
in your other physics and math classes. Don’t hesitate to look online for help. Websites like
stackexchange.com will become your best friend. As you continue to solve problems and look
for help online, you will notice that some of the programming will stick with you, and you
will find yourself searching less online, as you solve more and more problems. When learning
a new programming language, it is very useful to first do some basic reading on syntax,
then jump right into solving problems, by using websites like Stack Exchange for assistance.
As you solve more programming problems, you will be learning an invaluable skill that will
serve you in many ways in your development as a scientist! All of the code that appears
in this book can be downloaded at www.routledge.com/9781138495289. We encourage you
to download and modify the code. It will help you learn how to use both Python and
Mathematica. We recommend the Anaconda Python distribution (www.anaconda.com) to
run the Python programs in this book.

A NOTE TO INSTRUCTORS
One of our motivations for writing this book was to better prepare our students for the
large variety of careers that they pursue after graduating from a physics program. We have
found that after graduation, our students are increasingly taking on careers where compu-
tation is a critical element. Our students often take at least one computer science course.

http://stackexchange.com
http://www.anaconda.com
http://www.routledge.com/


i
i

“master˙book˙file” — 2020/9/5 — 9:32 — page xv — #15 i
i

i
i

i
i

Preface � xv

However, they were not always making the connection of how to apply the programming
skills they learned in computer science for the purpose of solving problems in physics. Part
of the reason is because traditional physics courses are still focused on closed-form solutions
and, when computation is used, it is generally focused on using computer algebra systems
to perform complicated integrals, with the occasional numerical solution of a differential
equation thrown in for good measure.

We believe that it is time for computation to be more closely integrated into the physics
curriculum. Doing so clearly demonstrates to students how to use computation to solve
problems, a skill that many of them will find critical whether they go to graduate school,
or enter into careers in government or industry after graduation. We should remember that
the majority of physics students (65% at the time of this writing [Supiano(2018)]) do not
go to graduate programs in physics or astronomy. Of the graduates who work in the private
sector, 77% work either in engineering, computer or information systems, or non-science
fields that regularly solve technical problems [Supiano(2018)]. Teaching students to use
computation to solve physics problems will provide them a transferable skill that they can
apply in their future careers, even if they never need to find a Lagrangian after taking their
classical mechanics course.

Of course including computation in a classical mechanics course (or any physics course)
comes at a cost, but we believe the payoff is well worth the cost. Every minute spent on
the instruction of programming and computation is one less minute that can be spent on
the instruction of topics like conservation laws, Hamiltonians, etc. In addition, by using
this textbook the student may be in a position where he/she needs to learn computer
programming, the use of a computer algebra system, and classical mechanics. This can be
a challenging position to be in as a student. However, today’s online resources can allow
students to more quickly pick up computing skills.

A quick online search will result in sites that provide online courses in Python pro-
gramming. However, even simple web searches such as, “How do I integrate an equation
in Mathematica?” can provide the student enough instruction for solving problems in both
Python and Mathematica. We find that the best method of learning how to use com-
putational tools is by actually solving problems with them. Physics students often learn
mathematics along with the physics topics, in order to solve physics problems. The same
can be true for programming.

At this point, you might be wondering about the trade-off in content? Both of the
authors teach one-semester–long classical mechanics courses and are aware of sacrifices that
need to be made when introducing new material in a well-established course like classical
mechanics. We did our best to include in this book all of the major topics traditionally
covered in a classical mechanics course. We believe we were successful in that endeavor.
This book can be used like any other classical mechanics book, such as the classic Classical
Dynamics of Particles and Systems by Thornton and Marion, and the chapters are in fact
structured like many other texts in the field.

An instructor can skip much of the discussion of computation and use this book like any
other. However, the inclusion of the computation allows the students to explore problems
that are difficult, or inaccessible without computation. It may be the case that in a one-
semester course, the instructor may need to be more selective in the physics topics covered.
We believe the exchange is worthwhile. The payoff is the ability to explore problems that
are not solvable in closed-form. Many real-world problems that students will encounter are
not solvable in closed form. Furthermore, the aforementioned transferable skill of using
computation to solve problems is an additional payoff that will serve students well for their
entire career.
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C H A P T E R 1

The Foundations of Motion
and Computation

So, you have decided to—or are required to—learn the subject of classical mechanics. But,
what is classical mechanics? Is it fixing old cars? No, but a knowledge of classical mechanics
will help you understand how your car works! To understand the term, classical mechanics
let us first understand the term classical physics. Classical physics are the fields of physics
that don’t involve either quantum theory or the theory of relativity. Mechanics is the branch
of physics that deals with the actions of forces on an object that involve motion. So, classical
mechanics involves the study of forces on objects that are well-described without using
quantum theory and whose motion is nonrelativistic (i.e., cases where relativity is not
needed to correctly model the motion). In other words, classical mechanics is the physics of
your day-to-day world! An understanding of classical mechanics will help you understand
how to build roller coasters, merry-go-rounds, and airplanes. Our knowledge of classical
mechanics also allows us to make predictions on the motion of objects like comets and
punted footballs. The world you interact with on a daily basis is generally the world of
classical mechanics.

At first it might seem that classical mechanics is a dusty old subject that you need
to learn in order to get to the “interesting stuff” like quantum mechanics. While the field
of classical mechanics is one of the older subjects in physics, it is certainly not dusty! In
fact, there is a lot of intriguing current research done in classical systems. For example,
in Chapter 13 we will explore the field of nonlinear systems, which occur in in many of
the natural and social sciences, not only in physics, and they display interesting types of
behaviors including chaos.

1.1 THE WORLD OF PHYSICS
It is helpful to break up the field of physics into different branches. It should be noted that
such divisions are largely arbitrary but useful human constructs that help us understand the
world around us. As we sometimes tell students: Mother Nature doesn’t care if a particular
system is a thermodynamics problem or a classical mechanics problem; humans make those
distinctions in order to better understand how to describe and model the system. In fact,
most real-world problems involve multiple fields of physics. So with that in mind, we can
loosely break up physics into the following branches:

• Classical Mechanics deals with how forces cause motion in classical systems.

1
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• Thermodynamics deals with relationships between all forms of energy; often the focus
is on heat and its relationship with other forms of energy.

• Electromagnetism deals with the interaction of electrically-charged particles using the
concepts of electric and magnetic fields.

• Statistical Mechanics deals with understanding how macroscopic properties, such as
temperature and pressure, emerge from a large number of particles that make up the
system.

• Relativity deals with the dependence of physical phenomenon on the relative motion
between the observer and the observed. Physicists often consider three cases of relativ-
ity: Galilean relativity (which falls under the category of classical physics), Einstein’s
theory of special relativity, and Einstein’s theory of general relativity. Special rela-
tivity focuses on the dependencies between inertial frames of reference while general
relativity, a generalization of special relativity, takes into account noninertial frames.

• Quantum Mechanics deals with the interactions between subatomic particles and
between subatomic particles and radiation.

Classical mechanics is one of the first topics learned by a physics student because it deals
with the more intuitive concepts of force and motion. It provides tools for not just describing
motion but also predicting motion. One of the central ideas of classical mechanics is that if
one knows the position and velocity of a particle at time, t, then one can find the particle’s
position and velocity at any point in the past or future (except for the case of chaotic
systems, which we will deal with later). The ability to make predictions is critical in science,
hence, classical mechanics provides a powerful set of tools, which are widely applicable to
many different types of systems.

As mentioned earlier, almost all real-world problems involve more than one branch
of physics, and classical mechanics is often an important element to those problems. For
example, one might want to know the motion of a charged particle in a magnetic field. The
first step would be to find the force on the particle from the magnetic field using formulas
from electromagnetism, then the position and velocity as a function of time can be found
using Newton’s second law (a formula from classical mechanics). Although this example is
simple, it illustrates the point that problems rarely involve only one branch of physics. Even
if one is working with a system in which quantum theory must be included, semiclassical
approaches, where part of the problem is treated classically, are sometimes quite useful.

It is common for classical mechanics to take a central role in many physics problems
because of the question it addresses.

The “Fundamental Question” of Classical Mechanics

Given the forces acting on an object, what is the resulting motion of that object?

Hopefully, you understand how classical mechanics fits in with the other branches and
its central importance to the larger field of physics. In the rest of this chapter, we will
lay down the important foundations for classical mechanics, starting with the next section
where we will explore the basic assumptions of classical mechanics.
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1.2 THE BASICS OF CLASSICAL MECHANICS
When thinking about any discipline of science, first ask what are the basic foundations of
the field? Sometimes these foundations are assumptions. For classical mechanics we can
start with space and time:

• Space serves as a background in which physical processes occur. Unlike in the theory of
general relativity, space has no effect on the behavior of physical systems. Furthermore,
length measurements are the same for every observer, unlike in the theory of special
relativity.

• Time progresses at the same rate for every observer (unlike in the theories of special
and general relativity).

Classical mechanics addresses the problem of predicting an object’s motion given the
forces acting on the object. For now, we will consider the object to be a point particle. The
advantage of working with point particles is that they have no size and no internal dynam-
ics. In addition, point particles do not rotate nor do they deform, further simplifying their
dynamics. It turns out that treating objects as point particles can be a very good approx-
imation for describing translational motion. In later chapters, we will study the physics
of extended bodies and rotational dynamics, where we will no longer restrict ourselves to
working with point particles.

1.2.1 The Basic Descriptors of Motion
In order to describe the translational motion of a particle, we need three quantities that we
will call the basic descriptors of motion: position, velocity, and acceleration. For rotational
motion, we will need three additional quantities: angular position, angular velocity, and
angular acceleration, and we will return to those later in the book.

1.2.1.1 Position and Displacement
The position of a particle is the location of the particle with respect to an origin and is
measured in meters. The meter is defined as the distance light travels in 1/299,792,458
seconds. Note that the second was defined in 1967 at the 13th meeting of the International
Committee on Weights and Measures. At that meeting the following definition was adopted:
“The second is the duration of 9,192,631,770 periods of the radiation corresponding to the
transition between the two hyperfine levels of the ground state of the cesium-133 atom.”

The position of the particle is typically described by using a vector whose components
consist of the particle’s distance from the origin along three perpendicular axes. For example,
in Cartesian coordinates the location of a particle can be described using:

r = x̂i+yĵ+zk̂ (1.2.1)

where î, ĵ, and k̂ are the Cartesian unit vectors along the x, y, and z axes, respectively. The
variables x, y, and z in (1.2.1) give the distance between the particle and the origin along
each axis and are called the components of the vector. Also note that in (1.2.1): r = r(t),
x= x(t), y = y(t), and z = z(t). In this book, vectors are denoted by bold font. In Chapter
3, we will discuss vector quantities in more detail.

The vector in (1.2.1) tells us that in order to get to the location of the particle, r, one
needs to move a distance x along the x-axis (as denoted by î), turn and move a distance y
along the y-axis (as denoted by ĵ), and then turn and move a distance z along the z-axis
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(as denoted by k̂). The notation used in this book is that a hat (the ˆ symbol) represents
a unit vector , a vector of length one. Hence, we can think of r as the sum of three vectors:
x̂i, yĵ, and zk̂, each representing a displacement from the origin along one of the axes.

The displacement of the particle, ∆r = r− r0, is the change of the particle’s position
from the position, r0, to the position, r. The displacement is found by subtracting the two
vectors r0 and r, component by component,

∆r = r−r0 = (x−x0)̂i+ (y−y0)̂j+ (z−z0)k̂ (1.2.2)

You may recall that a vector quantity contains information about both magnitude
(amount) and direction. In this case, the vector ∆r tells us how far (magnitude) and in
which direction the particle traveled.

You may also see the unit vectors in the form x̂, ŷ, and ẑ, sometimes used to clarify
that one is working in the Cartesian coordinate system. In addition, sometimes it will be
easier to use more generic notation for vectors where r1, r2, and r3 are used instead of the
components x, y, and z and the unit vectors ê1, ê2, and ê3 are used instead of î, ĵ, and k̂.
This generic notation allows for a more compact method of writing vectors:

r = r1ê1 + r2ê2 + r3ê3 =
3∑
i=1

riêi (1.2.3)

There are other coordinate systems which we will explore later in this book. Each coor-
dinate system will have its own components and unit vectors, however, the basic idea of
position and displacement will be the same.

1.2.1.2 Velocity
The velocity v of a particle is the particle’s displacement (change of position) per unit
time and is measured in meters per second (m/s). The instantaneous velocity is found by
computing the time derivative of the position vector:

v = dr
dt

= lim
∆t→0

∆r
∆t (1.2.4)

where ∆r = r(t+ ∆t)− r(t). All of the vectors we will come across here are differentiable,
and the limits will exist. Furthermore, the derivative in (1.2.4) will behave like derivatives
you have encountered before. Therefore, we can use the standard derivative rules:

d

dt
(r1 +r2) =dr1

dt
+ dr2

dt
(1.2.5)

d

dt
(cr) =rdc

dt
+ c

dr
dt

(1.2.6)

where c is a scalar function of time. The rules in (1.2.5) and (1.2.6) allow us to distribute
the derivative to each vector component. In addition, if the unit vectors are constant, like
they are in Cartesian coordinates (but not in others!), then we can compute the velocity
by:
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v =dr
dt

(1.2.7)

= d

dt

(
x̂i+yĵ+zk̂

)
(1.2.8)

=dx

dt
î+ dy

dt
ĵ+ dz

dt
k̂ (1.2.9)

or: v = vx î+ vy ĵ+ vzk̂ where vx = dx/dt, and so on. Note that there are only three terms
(and not six) in (1.2.9) because the Cartesian unit vectors are constant. Note that the speed
of a particle is the magnitude of its velocity vector. We will discuss how to calculate vector
magnitudes in Chapter 3.

Finally, we can further simplify the notation by using dots to denote differentiation with
respect to time (i.e., ẋ= dx/dt). Hence:

v =ṙ =ẋ̂i+ ẏĵ+ żk̂ (1.2.10)
We will find the dot notation to be very useful in the chapters to come.

1.2.1.3 Acceleration
Acceleration, a, is the change of velocity per unit time and is measured in meters per second
squared (m/s2). The acceleration of an object is computed similarly to velocity:

a =dv
dt

(1.2.11)

= d

dt

(
vx î+vy ĵ+vzk̂

)
(1.2.12)

=dvx
dt

î+ dvy
dt

ĵ+ dvz
dt

k̂ (1.2.13)

=v̇x î+ v̇y ĵ+ v̇zk̂ (1.2.14)

which, like velocity can be rewritten as a = ax î + ay ĵ + azk̂. The acceleration is also the
second derivative of the position vector and using the dot notation we can write:

a = d2r
dt2

(1.2.15)

= ẍ̂i+ ÿĵ+ z̈k̂ (1.2.16)
As we will see in future chapters, the acceleration is very important in classical mechan-

ics. Much of what is discussed in this book is about how to develop an equation for the
acceleration, which can then be integrated to get the motion of the system. All measure-
ments of position, velocity, and acceleration, are relative to the frame of reference (choice of
origin and axes) from which the measurements are made. We will return to the important
idea of reference frames in Section 1.4.

1.2.2 Mass and Force
The basic descriptors of motion simply provide a means of describing how an object is mov-
ing. If we want to understand why an object moves as it does, then we need to understand
the concepts of mass and force.
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1.2.2.1 Mass
The mass of an object is a measure of the object’s inertia, how strongly the object resists
acceleration. For example, a loaded shopping cart is more difficult to accelerate than an
empty one. Recall from your introductory physics course that mass is a scalar quantity
because in order to describe mass, only a magnitude is needed.

To compare the mass of objects, one could use a beam balance. In order to speak
quantitatively about mass, it is helpful to have a standard mass to which all other masses
could be compared. Other physical quantities, such as the meter and second, are based on
fundamental constants. As mentioned earlier, the meter is based on the speed of light, and
the second is based on the ground state hyperfine splitting frequency of Cesium-133 atoms,
respectively. The definition of the kilogram has recently changed in order to be based on a
fundamental constant.

Before 2019, the unit of mass, the kilogram, was defined to be the mass of a platinum-
iridium cylinder stored at the International Bureau of Weights and Measures outside of
Paris, France. Hence, the mass of an object could be found by placing the international
standard on one side of the beam balance and the object on the other. If the object has
a mass of one kilogram, then the balance will remain level, otherwise the balance will tilt
towards the more massive object.

The problem with using the old definition of the kilogram is that the mass of the standard
changed over time. Although the international standard and its copies (many countries have
several copies) were carefully stored, they were occasionally exposed to air and, therefore,
absorbed atmospheric contaminates. The problem here is that the copies used by various
countries gained mass at different rates than the international standard. Although these
differences might be in the micrograms, they were important when measuring sensitive
processes such as radioactive decay.

As of May 2019, the kilogram was redefined by setting the Planck constant to be
6.62607015×10−34 kg m2s-1.

Regardless of how the kilogram is defined, you might be wondering why we can use a
beam balance to compare masses. We can use a beam balance because weight is proportional
to mass according to the weak equivalence principle, which says that gravitational mass
is equal to inertial mass. Gravitational mass is the mass that determines gravitational
forces between objects; whereas the inertial mass determines the acceleration of an object
experiencing a given force. At the time of this writing, experiments show that the two
masses are equivalent to about one part in 1012, and future experiments are planned for
even more accurate testing.

1.2.2.2 Force
Like mass, the concept of force is one with which we are intuitively familiar. A force is
essentially a push or a pull in a particular direction. You push forward on a shopping cart
to move it in the direction you wish to go. However, if someone steps in front of your cart as
it is moving, you would pull back on the cart to make it stop. From our everyday experience,
we know that forces cause motion and that multiple forces can be acting on an object. For
example, if you are in the gym lifting weights, then you are exerting a force to raise a
dumbbell. If you let go of the dumbbell, it will fall, demonstrating that the force of gravity
is also acting on the dumbbell. Hence, we see that in order to understand the motion of an
object, we need to know about all of the forces acting on the object. When accounting for
all of the forces, we need to know both the magnitude (or amount) and direction of each
force. Similar to displacement, velocity, and acceleration, force is a vector quantity.



i
i

“master˙book˙file” — 2020/9/5 — 9:32 — page 7 — #23 i
i

i
i

i
i

The Foundations of Motion and Computation � 7

The unit of force is the newton (abbreviated N) and 1 N is the total amount of force
needed to provide an acceleration of 1 m/s2 to a 1 kg mass. We also know from everyday
experiences that there is a direct linear relationship between force and acceleration. For
example, a 4 N net force will cause a 1 kg object to accelerate 4 m/s2. Of course, the
acceleration is caused by the vector sum of the forces. When you hold your cell phone, you
are exerting a force upwards that matches the downward force of gravity, hence the two
forces are equal in magnitude but opposite in direction, and therefore, their sum is zero.
Hence, the cell phone does not accelerate.

We have now laid out all of the tools needed to describe and explain an object’s motion.
Next, we will discuss the core topic of classical mechanics, Newton’s Laws of Motion, which
will explain the role of force and mass in determining the motion of an object.

1.3 NEWTON’S LAWS OF MOTION
Isaac Newton (1642–1727) developed both calculus and the foundations for classical mechan-
ics. Newton’s book, Philosophiae Naturalis Principia Mathematica (Mathematical Princi-
ples of Natural Philosophy) was published in 1687 and is considered to be one of the most
important works in the history of modern science. In the Principia, Newton stated his three
laws of motion. Newton’s laws of motion are vital tools that allow us not only to explain
why objects move the way that they do, but they also provide us with a means of predict-
ing an object’s motion. In classical mechanics, the importance of Newton’s laws cannot be
overstated; they are worth committing to memory. As you solve problems in this book, ask
yourself how Newton’s laws are involved in the setup and solution to each problem. In this
section, we will go through each of the three laws in detail.

1.3.1 Newton’s First Law
Newton’s first law of motion is often remembered by students using the phrase, “An object
in motion remains in motion, and an object at rest stays at rest unless acted upon by
an unbalanced force.” The problem with this phrasing is, what is meant by motion? Does
motion mean position, velocity, acceleration, or something else? The proper phrasing of
physical laws is critical for developing a good understanding of what the law says. The
phrasing of the law should use proper physics terminology, not to be confusing, but rather
to be clear!

Newton’s First Law

A particle’s velocity remains constant if the net force acting on the particle is
equal to zero.

Let us look carefully at what the first law says. The first law says that a particle’s
velocity remains constant if the vector sum of the forces (net force) is zero. The term “net
force” is important because there can be forces acting on the particle, but if all of those
forces sum to zero, then the particle’s velocity doesn’t change. The first law is sometimes
referred to as the law of inertia because it says that an object will continue moving with a
constant velocity forever, if there are no net forces acting on it. Inertia is, simply put, an
object’s resistance to acceleration. Hence, the particle’s inertia will ensure that the particle
will continue moving in a straight line with a constant velocity or remain at rest (zero
velocity), until it experiences a force that will change the particle’s speed, direction, or
both.
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We know that acceleration is the change of velocity and hence, the first law states that
a nonzero net force is needed to cause an acceleration.

Finally, the first law provides a definition for the term equilibrium. A particle is in
equilibrium if the acceleration of the particle is equal to zero. Hence, one condition for
equilibrium is that the net force acting on a particle must be zero. We will later see that
when we study rotational dynamics, we will also need the net torque to be equal to zero as
an additional condition for equilibrium.

Before moving on to Newton’s second law, it is useful to compare our statement of the
first law to the more colloquial “An object in motion remains in motion, and an object
at rest stays at rest unless acted upon by an unbalanced force.” While there is nothing
technically wrong with this statement, notice that it is longer than our statement of the law
on the previous page. The colloquial version breaks down motion and rest as two different
behaviors. However, our use of the word velocity takes both states (motion and rest) into
account because being at rest simply means that the particle’s velocity is equal to zero. As
mentioned previously, the term motion is not one of our descriptors and therefore it is not
clear what is remaining constant. Additional terms can be added to explain motion, but at
the cost of conciseness. Finally, the term unbalanced force is also not as clear as the term
net force. The term net force means vector sum of forces, a clearly defined term. While the
colloquial statement of the First Law may use words familiar to most people, a physicist
would prefer a statement similar to the one in the box above, due to its use of precise
language.

1.3.2 Newton’s second law
Newton’s second law of motion is used to find a particle’s equations of motion, which are
equations that give the particle’s position, velocity, or acceleration at any point in time.
We will be using Newton’s second law as the central tool for mathematically describing the
motion of a particle throughout this book.

Newton’s Second Law

A particle’s time rate of change of linear momentum, p, is equal to the net force, F,
applied to the particle:

F = ṗ (1.3.1)

where the linear momentum of a particle with a mass m and velocity v is defined to be:
Linear Momentum of a Single Particle

p =mv (1.3.2)

Equation (1.3.1) might not be the way you are used to seeing Newton’s second law. If
we consider a system with constant mass m such as a single particle experiencing a nonzero
net force, then we have:

F = dp
dt

= d

dt
(mv) (1.3.3)

F =ma (1.3.4)
and we recover the more familiar form of the second law. However, when studying the
motion of an object whose mass m is changing with time, such as in the case of a rocket,
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the form of the second law presented in (1.3.1) will be the one needed in order to derive the
object’s equations of motion.

Although we will use the form of Newton’s second law F = ma most often for calcula-
tional purposes in this book, we find it helpful to think of the second law in the form:

a = F
m

(1.3.5)

We find this form to be more useful when understanding the concepts behind Newton’s
second law. Equation (1.3.5) tells us:

• Acceleration is in the same direction as the net force. There is no minus sign in front
of F to denote an acceleration in the opposite direction, nor is there any mathematical
transformation done to the vector F to rotate it.

• The magnitude of the acceleration is directly proportional to the magnitude of the net
force. In other words, net forces with a large magnitude produce larger magnitude
accelerations than net forces with small magnitudes. Mathematically, this can be seen
because F appears in the numerator of the fraction in the right-hand side of (1.3.5)
and by thinking of the equation as: |a|= |F|/m.

• Mass “resists” acceleration. The mass m appears in the denominator of the fraction
in the right-hand side of (1.3.5). Large denominators result in smaller overall fractions
when compared to a small denominator with the same numerator (i.e., 1/4 < 1/2). In
other words, with the same given force, objects with a larger mass experience a smaller
acceleration, and smaller mass objects experience a larger acceleration.

All three of the above bullet points are contained in the one simple equation (1.3.5)! This is
one of the reasons why physicists prefer math as the language for describing the universe.
A lot can be said in one simple equation. As a physicist, you should learn how to “read
equations” like we did above.

Notice the consistency between the first and second laws. If F = 0, i.e., a zero net force
is acting on the particle, then a = 0, and the particle’s velocity is not changing, just as
stated in the first law. Likewise, we could have restated Newton’s first law as: “A particle’s
momentum remains constant if no external net force acts on the particle.”

As we mentioned, the second law will be used to produce differential equations which
describe the motion of a particle. As a simple example, we will consider a particle moving
in one dimension (along a line) under the influence of a constant force, where a = ẍ̂i and
F = F î. Recall that the dots above the x denote a second derivative with respect to time.
We can use (1.3.5) to write:

ẍ= F/m= a (1.3.6)

Equation (1.3.6) says that the solution x(t) is a function such that its second derivative is
equal to the constant, a. Recall from simple algebra that an equation like x+3 = 10 says x is
the number that when added to 3 gives 10. In that case, the solution, x, is a number (x= 7).
The second-order differential equation (1.3.6) is similar to our algebra problem (but much
harder!), except instead of finding a number, you are asked to find a function. Differential
equations are the mathematical language used by physicists to describe the motion of a
particle. Be prepared to solve them both in closed form (analytically) and numerically. Just
to whet your appetite, if a is constant, the solution to (1.3.6) is:



i
i

“master˙book˙file” — 2020/9/5 — 9:32 — page 10 — #26 i
i

i
i

i
i

10 � Classical Mechanics: A Computational Approach

x(t) = x0 +v0t+
1
2at

2 (1.3.7)

where x0 = x(0) and v0 = v(0), are the initial position and velocity, respectively. You can
check this for yourself by taking two derivatives of (1.3.7) and showing that it satisfies
(1.3.6) in the case of a constant a. In Chapter 2, we will go through the steps to derive
(1.3.7) and other solutions to differential equations. If you aren’t certain how we obtained
(1.3.7) from (1.3.6), don’t worry, you should understand it by the end of Chapter 2.

Finally, we can return to the weak equivalence principle. Suppose a particle is near the
surface of the Earth and experiences only the force of gravity (weight W ):

F =W
minertial a=mgravitational g (1.3.8)

where we have dropped the vector notation, assumed “downward” is the positive direction,
and used g for the acceleration due to gravity (9.8 m/s2). The mass minertial in this equation
is the m from Newton’s second law, i.e., it is the mass that “resists” acceleration, and we
call this the inertial mass. The mass mgravitational is the mass that is affected by gravity
and is called the gravitational mass. The weak principle of equivalence says that minertial =
mgravitational, and therefore the masses cancel, and a= g for a freely falling body near the
surface of the Earth. If the weak equivalence principle were not true, then the mass of an
object would affect its acceleration due to gravity. So far, physicists have not been able to
detect any mass dependence (outside experimental error) on an object’s acceleration due to
gravity, even in the most sensitive of experiments.

1.3.3 Newton’s third law
Newton’s third law is a statement that discusses the nature of interactions between two
particles. In order to state Newton’s third law, we need to consider two objects interacting
by exerting a force on each other. Let us define F12 to be the force on object 1 exerted by
object 2, and F21 is the force on object 2 exerted by object 1. Newton’s third law is then
stated:

Newton’s third law

If object 2 exerts a force F12 on object 1, then object 1 exerts a force F21 on object 2
such that:

F21 =−F12 (1.3.9)

Notice that the minus sign and lack of a scalar multiple in (1.3.9) says that the force
exerted by object 2 on object 1 is equal in magnitude (lack of scalar multiple which, if
present, would change the magnitude), but opposite in direction (denoted by the the minus
sign) to the force object 1 applies on 2. Many of the interaction forces we will study in this
book will be central forces. Central forces are forces that act along the line that joins the
centers of the two interacting objects, such as gravity and electrostatic forces, and obey
Newton’s third law. Velocity-dependent forces are not central, and the third law may not
apply. An example is the force between two moving electric charges; the Lorentz force is
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velocity-dependent, and the magnetic force vectors between the two charged particles do
not lie along the same line, hence the resulting net forces do not obey Newton’s third law.

Let us take (1.3.9) a little further:

F21 =−F12 (1.3.10)
m1a1 =m2 (−a2) (1.3.11)

Not surprisingly, we see that the accelerations of each object are in opposite directions. If
we continue manipulating (1.3.11), we find:

m1
m2

=−a2
a1

(1.3.12)

where we have taken the magnitude of the acceleration vectors. Notice that ratio of the
accelerations is inverse to the ratio of the masses. In other words, if m1 >m2 then a1 < a2,
in order for the right-hand side of (1.3.12) to be a fraction greater than one. As an example,
consider the classic scenario of a mosquito hitting the windshield of a moving automobile.
Let the mosquito be object 2 and the car be object 1. Clearly, the automobile has more mass
than the mosquito, m1 >m2, and according to (1.3.12), the acceleration of the mosquito is
greater than that of the automobile, a2 > a1. It is a bad day for the mosquito. Another way
to interpret (1.3.12) is that an object cannot accelerate without another object accelerating
in the opposite direction.

Next, we need to address one other important fundamental concept for classical mechan-
ics: reference frames. Once we have a working understanding of reference frames, we will
have finished laying out the foundations of classical mechanics, and we will be ready to do
some physics!

1.4 REFERENCE FRAMES
All of the basic descriptors of motion are measured with respect to a reference frame. A
reference frame is a choice of origin, spatial and temporal, as well as a set of axes with respect
to which all measurements are made. For example, if you are holding your cell phone in a car
moving at a constant speed of 60 MPH while your friend is driving, then you observe your
phone to be at rest. However, a bystander on the side of the road will observe your phone to
be moving at 60 MPH. Who is correct? They both are, because the measurement of velocity
depends on the reference frame. In this case, your frame is moving with the car while the
bystander’s is at rest on the side of the road (ignoring Earth’s motion). By choosing the
right reference frame, you may be able to simplify a particular physics problem, in this case
a moving phone versus one at rest. For another example, in introductory physics you no
doubt worked on problems involving inclined planes. It is well known that choosing one axis
to be parallel to the incline greatly simplifies the free-body diagram for the problem. Other
changes of reference frame may simply involve changing the time for which t= 0.

Another important point to mention about the above example is that the two reference
frames are moving relative to one another with a constant velocity. This will make the
accelerations measured in each frame the same. Consider the following example, shown in
Figure 1.1, with two reference frames S and S′, where S′ is moving with respect to S
with a velocity u= ḋ, and d(t) is the distance between the two reference frames at a time,
t. Note that in this case, primed variables denote the reference frame they belong to not
differentiation. In each frame, an observer is measuring the location of the black dot. The
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x x'

y y'

S S'

xS'

xS

d

Figure 1.1: The frame S′ is moving at a constant velocity with respect to the fixed frame,
S. The particle (black dot) is measured to have a position xS in the reference frame S and
xS′ in the reference frame S′. The distance between the references frames is d.

observer in S measures the black dot to be located at xS . Likewise, the observer in S′

measures the black dot to be at xS′ .
Now suppose the observers in each frame want to communicate to each other the motion

of the black dot. To keep things simple, we will consider motion only along the x-direction.
The coordinate transformation between the two reference frames:

xS = xS′ +d (1.4.1)

allows the two frames to consistently describe the motion in each frame. First, we will
consider the case where S′ is moving at a constant speed relative to S, in other words, u= ḋ
is constant. Differentiating (1.4.1) with respect to time will give us the transformations of
the velocity between coordinate systems:

ẋS =ẋS′ +u (1.4.2)
vS =vS′ +u (1.4.3)

Hence, if the observers in each frame wanted to determine if they are consistently measuring
the velocity of the particle, then they can insert their measured velocities into (1.4.3) in
order to check the other’s result. Next, we compute the acceleration transformation:

ẍS =ẍS′ + u̇ (1.4.4)
aS =aS′ (1.4.5)

where we used the fact that u (the relative velocity between frames) is constant. Note that
(1.4.5) says that the measured accelerations in the two frames are the same, thus (1.4.5)
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also tells us that the forces measured on the particle in each reference frame are the same
and therefore Newton’s laws hold in their typical form in each frame. In other words, if we
measured the acceleration of the particle in each reference frame, we would find that the
measured acceleration can be accounted for by considering all of the forces acting on the
particle. The reference frame, S′ is called an inertial reference frame because it is moving
with a constant velocity. Newton’s second law holds in inertial reference frames.

Let us now contrast that with the case of S′ accelerating with respect to S. In this case,
(1.4.3) doesn’t change, and (1.4.5) becomes:

aS = aS′ + u̇ (1.4.6)

and u̇ 6= 0. Now the two measured accelerations are not the same, and therefore the measured
forces in each frame are different. In particular, the acceleration of a particle in a noninertial
reference frame cannot be accounted for by summing all of the forces acting on the particle.
For example, on certain carnival rides that involve rotation, you will experience an apparent
outward force which is not caused by any forces acting on you from the ride itself. This is
an example of a noninertial reference frame where Newton’s laws no longer hold in their
standard form because there is an acceleration measured in S that is not apparent in S′. As
we will see in a later chapter, we can modify Newton’s laws in order to address the case of
noninertial frames. Such modifications involve treating the acceleration u̇ as coming from
an inertial force, a force that is not created by physical interactions, but rather is due to an
accelerating frame. While the surface of the Earth typically approximates an inertial frame,
the Earth does rotate and revolve around the Sun; hence, the velocity of a reference frame
“glued” to the Earth’s surface is not constant. There are cases where the noninertial nature
of the “glued” frame needs to be accounted for. Such cases include long-distance motion
such as missile trajectories and the motion of wind and water currents.

1.5 COMPUTATION IN PHYSICS
An important part of this book is the inclusion of computation in solving problems. Compu-
tation is defined by Merriam-Webster [MW()] as “the act or action of computing.” The term
“compute” is further defined by Merriam-Webster [MW()] as “to determine by especially
mathematical means” and “to determine or calculate by means of a computer.” It is the
latter definition that is addressed in this book. So when we say “computation” in this book,
we mean using a computer to solve physics and mathematics problems, either analytically
or numerically. Physicists use computers in a variety of ways to solve problems. In addition
to providing instruction in classical mechanics, this book will also provide you instruction
on how to use computers to solve physics and mathematics problems.

Extensive experience in coding is not necessary in order to begin reading this book.
In fact, we will mainly rely on commands that are already a part of software packages.
That said, you will pick up the coding that you need along the way. In this section, we
will provide a motivation for how computing is used in physics and why it is important.
Also in this section, we will discuss different types of programming languages, and some
direction on how to go about learning to code. Coding has become a fundamental skill for
a physicist. We believe that all students should have coding experience before graduating
with an undergraduate degree in physics. Hopefully, by the time you have finished this book,
you’ll have a thorough understanding of both classical mechanics and how to use computers
to solve physics problems. Think of it as a two-for-one deal!
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1.5.1 The Use of Computation in Physics
To understand how computation is used in physics, we will demonstrate the solution to some
problems analytically (also known as “by hand”) and using computation. At this time, it
is not important to understand all of the physics in the problems, nor is it necessary to
understand the computational methods used to solve the problems; we will cover those
topics in detail later in this text. The important thing to take away from this section is an
appreciation of how computing is used and why computing is important.

Let us start with a simple physics problem that can be “solved by hand.”

Example 1.1: Velocity as a function of time
Consider a particle that is moving along a line with a constant acceleration, a. If at

time t = 0 the particle’s velocity is v0, find the formula for the particle’s velocity as a
function of time.

Solution:
We know from (1.2.11) that acceleration is the first derivative of velocity with respect

to time:

dv

dt
= a (1.5.1)

Next, we separate variables and integrate both sides of the equation. Think of separa-
tion of variables as multiplying by dt in order to get all of the v′s on one side and the t′s
on the other. After separation of variables (1.5.1) becomes:∫ v(t)

v0

dv′ =
∫ t

0
adt′ (1.5.2)

where we matched the lower and upper limits on each side. Notice that the lower-limit on
the right-hand side is t = 0, and the lower limit on the left-hand side is the value of v at
t = 0, similar for the upper limits. In addition, we included a prime on our variables of
integration to distinguish them from the limits of integration. Finally we integrate, noting
that a is constant:

v(t) = v0 +at (1.5.3)

The result is the velocity as a function of time, as requested by the problem.

Example 1.1 is an example of a problem that is “done by hand,” meaning that we were
able to perform the necessary mathematical manipulations to solve the differential equation
(1.5.1) without the aid of a computer. Equation (1.5.3) is called a “closed form” solution to
the differential equation (1.5.1) because it gives a specific solution consisting of functions
and mathematical operations. What is considered as “closed-form” is somewhat arbitrary
because, for example, a solution in the form of an infinite sum may not be considered in
“closed-form.”

As you will see in this book, solving physics problems very often involves finding the
solution to differential equations. Some of those equations have no closed-form solution,
while others are very difficult to find. In those cases, computation can be extremely helpful.

For the purposes of this book, there are two forms of computation:

• Symbolic Computation: involves using a computer to help find closed-form solutions to
differential equations, integrals, eigenvalues, and much more. You enter the equation
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or integral you want solved, and the computer program returns a closed-form solution.
You may have seen tables of derivatives and integrals; symbolic computation is a much
more sophisticated version of those.

• Numerical Computation: (also sometimes referred to as “numerics”) provides a list of
numerical values representing a solution. For example, a numerical solution to (1.5.1)
can be thought of as a table of values with two columns, t and v(t), where each row
contains a specific time, t, and the value of v at time, t. Numerical solutions are often
best represented as a graph of ordered pairs (and sometimes triplets, depending on
the dimension of the problem being solved).

As an example of each type of computation, we will use the programming languages, Math-
ematica and Python, to solve Example 1.1 both symbolically and numerically. Again,
the point of the next two examples is to provide an illustration of each type of com-
putation. We follow each example with an explanation of what is going on in the
code. Please note that all of the code that appears in this book can be downloaded at
www.routledge.com/9781138495289

Example 1.2: An example of symbolic computation
Using symbolic computation, solve the differential equation from Example 1.

Solution:
The code for using Mathematica to solve (1.5.1) is shown below.

solution = DSolve[{v′[t] == a,v[0] == v0},v, t];

v[t]/.solution[[1]]//TraditionalForm

OUTPUT: at+ v0

The code for using the interpreted-language Python to solve 1.5.1 is shown below.

from sympy import ∗
i n i t p r i n t i n g ( )

v = Function ( ’ v ’ )
t = Symbol ( ’ t ’ , r e a l = True , p o s i t i v e = True )
a = Symbol ( ’ a ’ , r e a l = True )

g e n e r a l s o l n = dso lve ( Der iva t i ve ( v ( t ) , t ) − a , v ( t ) )

p r i n t ( g e n e r a l s o l n . rhs )

OUTPUT
C1 + a∗ t

The first line in the Mathematica code for Example 1.2 uses Mathematica’s DSolve com-
mand to produce a solution to the differential equation. Notice that the differential equation
and its initial condition appear as the first argument of the command (in between the curly
brackets). Notice also the “==” as opposed to “=” in the equation. Often in programming
languages, the single equal sign is used for variable assignment, whereas the double-equal
sign is used for equivalence. The first line of code stores the solution generated by DSolve in

http://www.routledge.com/
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the variable solution (notice the single equal sign). The second argument v tells Mathemat-
ica that v is the function for which we are solving, and the third argument identifies t as the
independent variable. The second line in the code outputs the solution. The command Tra-
ditionalForm displays the output in a more readable format; without using TraditionalForm,
Mathematica would display the output differently. Notice that Mathematica’s solution is
the same as the one we derived in Example 1.1.

The Python code for Example 1.2 is much more involved than the Mathematica code.
The first line, “from sympy import *” causes Python to import the SymPy library. Python,
by itself cannot perform symbolic manipulations. We needed to import the SymPy library
in order to expand Python’s capabilities. Libraries are written by experienced programmers,
and they include functions which can be used by any code that imports the library. In this
case, the SymPy library includes functions like dsolve which solve differential equations
in closed form. Note that this is not the same as the Mathematica command, DSolve.
Commands from one language typically cannot be used in another. In order to make a
distinction between the two languages, we will preserve the capitalization used in each
language. For example, if we write DSolve, then we are discussing Mathematica’s command
for solving differential equation because in Mathematica the D and S are capitalized in
the command. The letters D and S are not capitalized in Python and, therefore, when we
discuss solving differential equations in Python, we will write the command dsolve, as it
appears in the language of Python.

A word of warning: libraries, while useful, may not be free of bugs. It is best practice to
test any library functions you are using in your code to make sure they behave as expected.
Python libraries like SciPy, NumPy, and SymPy are well-tested and well-documented. Doc-
umentation for these and other Python libraries can be found online.

Mathematica automatically recognizes a, vo, and t as symbols to be manipulated. In
addition, the Mathematica syntax, v[t], allows Mathematica to automatically recognize v
as a function. However, Python by itself would think of a, vo, t as variables for assignment
and would not recognize v(t) as a function. Therefore, all of the symbol identifications
need to be specified in Python. The Symbol and Function commands from the SymPy
library do exactly that. The general solution of the differential equation is given by the
SymPy command dsolve, whose arguments are the differential equation and the function
for which the differential equation is being solved. Notice that in Python, the differential
equation is written such that the right-hand side is equal to zero, and only the left-hand
side of the differential equation is entered. At the time of this writing, Python’s dsolve
command cannot solve the differential equation with the initial conditions at the same time
(except for power series solutions), unlike Mathematica’s DSolve. With more code, one could
perform the substitutions, however, they are not included here in order to prevent (further)
confusion. The output of the Python program is included below the word, OUTPUT. The
word, OUTPUT, and the line below it are not part of the Python code; we included it only
to show the output of the program. In this book, we will often show the output of a Python
program in this manner. Note the the C1 in the output represents a constant of integration.

In Example 1.2, we see that Mathematica requires a much shorter code to solve this
problem than Python because Mathematica is designed, in part, for symbolic manipulations.
Computer algebra systems (CAS) like Mathematica and Maple are very convenient and
easy to use when performing symbolic computations. The disadvantage is that they are
both proprietary and more expensive than other options, such as the open-source free CAS
SageMath (https://www.sagemath.org/).

Next, we will look at an example of a numeric computation and compare the two lan-
guages in that context.

https://www.sagemath.org/
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Example 1.3: An example of numeric computation
Using a = 9.8 m/s2 and an initial velocity of v(0) = v0 = 1 m/s, find and graph a

numerical solution to the differential equation from Example 1.1.

Solution:
The code for using Mathematica to solve (1.5.1) is shown below.

a= 9.8;

solution = NDSolve[{v′[t] == a,v[0]==1.0},v,{t,0,3}];

Plot[v[t]/.solution,{t,0,3},Frame→ True,Axes→ False,
FrameLabel→{“time (sec)”,“velocity (m/s)”},BaseStyle→{FontSize→ 18},
ImageSize→ Large]
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The Python code used to solve (1.5.1) is shown below. For brevity, we did not include
the resulting graph which is the same as the one above.

import numpy as np
from sc ipy . i n t e g r a t e import ode int
import matp lo t l i b . pyplot as p l t

vo = 1

de f v e l d e r i v (v , t ) :
a = 9 .8
dvdt = a
return dvdt

t imes = np . l i n s p a c e (0 , 3 , 30 )
v e l o c i t y = ode int ( ve lde r i v , vo , t imes )

p l t . p l o t ( times , v e l o c i t y )
p l t . x l a b e l ( ’ time ( sec ) ’ )
p l t . y l a b e l ( ’ v e l o c i t y (m/ s ) ’ )
p l t . show ( )
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In order to produce a numerical solution for Example 1.3, both languages needed to
have numerical values for all variables. In this case, we needed to specify a and v0. In the
Mathematica program, we used the first line of the code to specify the value of a, but we
defined the initial value of v in the Mathematica command NDSolve, which produces a
numerical solution to a differential equation. Notice that the arguments for NDSolve are
similar to those of DSolve, i.e., the order of the arguments are: equation to be solved and
initial values, the function for which we are solving (v), and identification of the independent
variable, t. This time, however, we needed to specify the range of t values for which v is
being solved. Recall the idea of a numerical solution being like a table of values containing
columns t and v(t), so we need to tell the computer when to start finding the solution (t= 0)
and when to stop (t= 3). The final line of the code produces a graph of the solution. Notice,
we get the expected line with y-intercept of 1.0 and slope of 9.8. Everything after {t,0,3}
(which dictates which values of t should be used to make the plot) in the final line of the
code are formatting commands which only affect the visual appearance of the graph. We
show the formatting commands so that you may make similar plots.

In the Python example, we needed to import three libraries, NumPy, SciPy, and Mat-
plotlib in order to perform the task of numerical integration. From the SciPy library we
imported only one function, odeint which will be used to numerically solve the differential
equation (1.5.1). Later in this book, we will talk about how to numerically solve differential
equations without using the libraries, but for now, we wanted to use functions included in
the aforementioned libraries in order to simplify the code. The NumPy and SciPy library
contain functions and algorithms critical for scientific computing. The functions contained
in NumPy and SciPy will greatly increase the speed of code written in Python, and we
strongly encourage you to use them whenever possible. The Matplotlib library is a plotting
library that will allow you to make graphs in Python. After the libraries are imported, we
defined the initial condition variable vo and the differential equation. In Section 13.2, we
comment more on libraries, the risks of using other people’s code, and the odeint command.

To solve the differential equation numerically, we created a new function in Python
that we called velderiv, which will contain the differential equation we are solving. User-
defined functions, like velderiv, are convenient in programming languages when a particular
calculation needs to be repeated many times. In Python, function definition is done using
the command def and is demonstrated in the above code. The arguments of the function
are included in parentheses following the function name. In this case, the arguments are v
and t. The next few lines contain the actual calculation of the function. Notice we included
a local variable dvdt, which stays within the function and is equal to the first derivative of
v. Equation (1.5.1) states that the first derivative of v is equal to a. The last line of the
function begins with the command return, which tells Python what value to return when
the function is called. In this case, we return the value of the variable dvdt. Hence, the
function velderiv returns the first derivative of v.

For the purposes of solving a differential equation, we write the function of the form,

dx

dt
= f(x,t) (1.5.4)

where the derivative is on the left-hand side and everything else on the right. As described
in the paragraph above, the function velderiv contains the right-hand side of the differential
equation (the side without derivatives). We will expand this procedure to second-order
differential equations in Chapter 2. After the differential equation is defined as a function,
we need to tell Python for which values of t we will be computing v. In this case, times is
an array which includes the values of t, which will be used to compute v. Arrays are lists
of values. In this case the array times contains the list [t0, t1, . . . , t30] = [0,0.1, . . . ,3.0], and
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hence we will be solving for v(0), v(0.1), . . . ,v(3.0). Next, it is time to solve the differential
equation. The command, odeint, used to solve the differential equation comes from the
scipy.integrate subpackage of the SciPy library. The odeint command requires the differential
equation (as a user-defined function, velderiv), the initial value (v0), and the list of times,
t as arguments. The result is an array, we called velocity, and it contains values [v0,v1, . . .],
where vi = v(ti). The last four lines of the program set up the graph of v versus t, which is
not shown.

Again, the Python code is longer than the Mathematica code. Does that make Mathe-
matica better than Python? That answer depends on what you are trying to do. If you are
interested in quick development and implementation, then Mathematica might be a very
useful tool for you. However, as we mentioned before, Mathematica is proprietary and more
expensive than Python. The proprietary nature of Mathematica means that you don’t have
access to the source code, and this can be a problem if you want to know exactly what
the commands are doing. Python is open source, so if you want to know what is “going
on under the hood,” you can find out. The open source nature of Python is valuable when
doing research, and you want to identify if unexpected results are due to bugs in code or
new science. That said, Mathematica is a language of its own, and you can write your
own programs in it. Finally, Python is free, and your budget may dictate your choice. We
will elaborate more on language selection in the next section. When working on their own
research problems, the authors of this book will often use both programs, choosing the most
appropriate tool for the particular job at hand.

It should be pointed out that sometimes, a closed-form solution to a differential equation
doesn’t exist or is difficult to find. In those cases, we rely on numerical solutions to give
us the information we need. You may think that numerical solutions are of limited value,
but as we will see throughout this book, there is a lot that can be found using numerics.
In Chapter 13, we will study nonlinear oscillators, and we will learn how to obtain a lot of
information from numerical solutions.

It is easy to walk away from an undergraduate physics education thinking that all physics
problems have closed-form solutions. This conclusion arises from the types of problems that
undergraduate students solve as part of their education. The truth of the matter is that
most problems physicists work on outside of the classroom require numerical solutions. The
differential equations governing real-world systems are often complex and not solvable in
closed-form. In those cases, numerics may be the only option to gaining any kind of insight
into the problem. A physicist with strong computational skills will be well-prepared to
tackle a wide variety of problems, not just in classical mechanics but in any field of physics
or engineering.

Furthermore, physicists find themselves working on a variety of problems outside the
traditional subfields of physics. Physicists often end up working on problems in finance,
economics, biology, climate science, and materials science, just to name a few. Today’s
physicists are involved in modeling economies, disease propagation, and social networks.
These types of problems allow physicists to apply their skills, including strong computational
and modeling skills, to interesting problems. It is our hope that this book will not only
prepare you well in physics but also set you on the path of developing strong computational
skills, so that you may tackle the exciting problems both inside and outside of physics,
wherever your career may take you.
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1.5.2 Different Computational Tools
A carpenter has a toolbox filled with a variety of tools, each tool designed for a specific
task. The same is true for computation: there are different types of programming languages,
each ideal for a variety of tasks. A computer programming language (here after, we will
just call them “languages”) is a special language programmers use to give a computer
instructions on how to perform a specific task. In this book, those tasks will focus on
performing the mathematics needed to solve physics problems. There are many different
computer languages used by physicists to solve problems; each language has its own set of
advantages and disadvantages. Just like a carpenter can use a screwdriver as a hammer,
computer languages can be used in applications they might not have been originally intended
for, to varying degrees of success. It is important for a physicist to be comfortable with a
few different programming languages so that he or she will be prepared for a variety of
problems.

In this book, we will divide languages up into three types: computer algebra systems
(CAS), interpreted languages, and compiled languages. This division is not intended to be
complete and cover all languages, but it will establish a way of thinking for how we will
approach languages in this book. Keep in mind that many languages will actually fit in
multiple categories, for example any language can be compiled or interpreted, but we will
assign languages by type in the way they are most often used.

• Computer Algebra System (CAS): CAS is software that can manipulate mathe-
matical expressions, similar to the ways you have learned in your mathematics courses.
CAS can solve a variety of mathematical problems in closed form, as we saw in Exam-
ple 1.2. Besides symbolic manipulations, CAS often has numerical components and its
own programming language. For example, the CAS Mathematica is also an interpreted
language (see below). Examples of CAS are: Mathematica, Maple, and SageMath.

• Interpreted Language: An interpreted language is one that can be executed directly
from the source code using software called an interpreter. Many people feel that inter-
preted languages are easier to learn, have a shorter development time (i.e., it takes
less time to write code), and are easier to debug (find and fix errors in code). Inter-
preted languages are generally easier to run on multiple operating systems, i.e., the
same Python (an interpreted language) script can be run on a Windows and a Linux
computer, provided both computers have Python installed on them. Examples of
interpreted languages include: Python, Mathematica, R, MATLAB, and JavaScript.

• Compiled Language: A compiled language is one whose source code needs to be
compiled by software called a compiler, which transforms the source code into machine
code and creates an executable. The executable is then run in order to perform the
instructions contained in the program. If changes are made to the program, it needs to
be recompiled, unlike an interpreted language. Likewise, the compiler creates instruc-
tions for the specific type of computer being used. Hence the executable created by
compiling a program on a Windows computer will not work on a Mac. Compiled lan-
guages typically have a shorter run-time compared to interpreted languages, although
for simple computational problems, the difference can be minimal. Examples of com-
piled languages are: FORTRAN, C, and C++.

The above categories are not intended to be strict divisions. We already mentioned that
theoretically, any language can be either interpreted or compiled. In addition, although
we will tend to think of Mathematica as a CAS in this book, Mathematica is also an
interpreted language which can be used to solve any numerical or symbolic computational
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problem. Python, an interpreted language, has a library called SymPy, which, as we saw
above, allows Python to become a CAS.

The type of language that you use depends on the nature of the problem you are trying
to solve. If you need help simplifying the mathematical form of an equation, a CAS is prob-
ably your best choice. While SymPy may be capable of mathematical manipulations, you
may find Mathematica easier to use for that problem, since Mathematica was specifically
designed for, among other things, symbolic manipulations. Interpreted languages are help-
ful for problems that are not computationally intensive, such as numerically solving certain
differential equations. The speed of compiled languages makes them ideal for computation-
ally intensive programs, such as climate models or modeling the motion of many stars in a
galaxy.

In this book, we are not going to be tied to one specific language. The focus of this book
is on classical mechanics and computation, not on a particular programming language.
The problems we will solve in this book are not computationally intensive, i.e., they won’t
demand a lot of computer resources or time. Hence, we will not be using a compiled language
in this book. For the sake of consistency, we chose to demonstrate the computations using
two languages, Mathematica and Python. The exercises and examples done in this book
can be done in any language you prefer, and, when appropriate, the code will be written in
such a way that it will be easy to reproduce in your language of choice. However, we felt
it would be best to avoid using too many different languages in the examples done in the
text.

Our choice of Mathematica and Python as example languages is not random. Both lan-
guages are used extensively in physics, and both languages are mature. The code that we will
write will focus on core commands that have been around for a long time and are not likely to
become outdated anytime soon. Python is free to use and available online for any platform.
You’ll likely want to download a distribution like Anaconda (https://www.anaconda.com)
which comes with an integrated developer environment (IDE). Mathematica is not free,
however, there are open source alternatives, such as SageMath which is available online
(https://www.sagemath.org/). SageMath was developed as an open-source alternative to
Mathematica. While there will be syntax differences between Mathematica and SageMath,
the symbolic calculations done in this text in Mathematica can, for the most part, be done
in SageMath.

You do not need to have experience with any programming languages to understand the
material presented in this book. Such previous experience will undoubtedly help in under-
standing the code contained in the book. However, we will introduce the necessary program-
ming concepts as they are needed, and we assume no programming experience. Mathematica
has extensive and very useful help files that we recommend going through. If you’d like to get
a head start on Python, we recommend Code Academy (https://www.codecademy.com/)
and the most recent edition of [Kinder and Nelson(2015)]. A quick way of getting your
feet wet and learning some basic programming skills is through using your favorite search
engine. Searches such as: “How to solve a differential equation in Mathematica” or “How
to integrate an equation in Python” often lead to many useful pages, which will at least
give you the syntax for how to solve a specific problem. While this is no substitution for an
introductory computer science course or a course in numerical analysis, it will certainly get
you started.

https://www.codecademy.com/
https://www.sagemath.org/
https://www.anaconda.com
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1.5.3 Some Warnings
We will end this section with some warnings. First, the availability of computational tools to
solve problems does not mean that you do not need to know how to do math by hand! There
are several reasons for this. The first reason is that computer algorithms can and do give
wrong answers. Computational algorithms have significantly improved over the decades, and
wrong answers from them are not as common as in the early days of computing. However,
you need to be able to identify a wrong answer when you see one. A proficiency with
mathematics is still needed for identifying wrong answers. Furthermore, it is not unusual
for one to perform additional algebraic manipulation to the output of a CAS in order for
the result to be in a more convenient or insightful form. We will see some examples in this
book where the output of a CAS will be technically correct, but not as useful for describing
the physics of the situation as compared to a result that we would have obtained “by hand.”

Second, a computer will provide a solution with no context. The techniques and critical
thinking that you learn by doing mathematics will train you in how to understand and
interpret computer-generated solutions, so that you can put the solution in the proper
context. For example, does your solution have appropriate limits? Does the solution conform
to known laws of physics? A person skilled in mathematics and physics is still required to
interpret computer-generated solutions (at least for now...). In particular, when one becomes
skilled at mathematics, symbolic algorithms should be considered as a tool to help one
focus on the physics without getting encumbered by lots of mathematics. In a sense, you
should think of symbolic algorithms as being similar to a calculator. Only after learning
arithmetic “by hand,” should one begin to use a calculator. In the same sense, mastery of
algebra, trigonometry, and calculus, should be a prerequisite for extensive use of symbolic
algorithms.

Third, who programs computers to solve math problems? The people who know how to
solve the math problems. Hence, we need people who can do math, in order to ensure that
we will have future generations of algorithms to assist us.

The final warning comes from the nature of the algorithms presented in this text. The
authors do not claim that the codes contained within are the most efficient means of solving
the problems in the text. We tended to produce codes that focused on pedagogy over
efficiency. We encourage you to rewrite the programs contained within, to see if you can
improve them and make them more efficient. By playing around with the codes, you’ll get
a better understanding of the algorithms and programming in general. Have fun!

1.6 CLASSICAL MECHANICS IN THE MODERN WORLD
Students sometimes come to a classical mechanics text wondering about the relevance of
the material to modern-day physics. They have questions about why they need to learn
classical mechanics when “all of the interesting stuff” is in the quantum realm or deals with
relativity. While some of the most exciting popular science books deal with the realms of
quantum mechanics and cosmology, there is plenty of active research going on in classical
systems.

One of the most exciting fields of research in classical systems is in nonlinear and com-
plex systems. Nonlinear systems is a field of science that attempts to understand systems
whose governing equations are nonlinear, and often not solvable in closed-form. These types
of systems include large amplitude oscillators, weather, predator-prey models, and certain
chemical reactions. Notice that two of these three examples are not from physics. That
is because nonlinear systems is a multidisciplinary field and one in which physicists have
made many contributions. Complex systems, simply put, are large systems of many inter-
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acting agents whose collective behavior cannot be explained by the dynamics of the indi-
vidual agents alone. Examples of complex systems include power grids, global climate, and
economies. Again, these examples aren’t strictly “physics problems” but rather problems to
which physicists have contributed greatly. Progress in the fields of nonlinear and complex
systems has required people trained in physics, notably classical mechanics and statistical
mechanics.

Another important field involving classical mechanics is fluid mechanics and turbulence.
There is a famous story of Werner Heisenberg, that on his deathbed he said, “When I
meet God, I am going to ask him two questions: Why relativity? And why turbulence? I
really believe he will have an answer for the first.” Variations of this story are told about
other physicists as well. The point is that turbulence continues to be a difficult problem in
classical mechanics. Improvements in our understanding of turbulence will greatly benefit
many technologies that involve fluid flow, such as pipelines and flight.

The paragraphs above contain just a few examples of the relevance of classical mechanics
to the modern world. We have left out many other examples such as mechanical engineering,
oceanography, and space flight. The point is that ignoring classical mechanics or treating
it simply as a step to get to something else, is a mistake. A fundamental understanding
of classical systems is critical to becoming a complete physicist. In many ways, classical
mechanics serves as the foundation of the field of physics itself. A physicist needs a solid
foundation of classical mechanics in order to understand other sub fields of physics.

One of the many benefits of learning classical mechanics is that it gives you the ability
to identify what factors influence a system (physical or otherwise) and how to express those
factors mathematically. Much of this ability centers on the idea of learning how to specify
a system, identify the forces acting on the system, and then writing down the relevant
equations of motion that govern the system. It is a powerful and useful way of thinking,
that will be a critical component of your training as a physicist and is a valuable skill
regardless of how you end up using your physics training.

1.7 CHAPTER SUMMARY

Motion is described using the basic descriptors of motion, displacement, velocity, and
acceleration. In Cartesian coordinates the position, velocity, and acceleration of a particle
are:

r = x̂i+yĵ+zk̂ (1.7.1)

v = dr
dt

= dx

dt
î+ dy

dt
ĵ+ dz

dt
k̂ = vx î+vy ĵ+vzk̂ = ẋ̂i+ ẏĵ+ żk̂ (1.7.2)

a = dv
dt

= dvx
dt

î+ dvy
dt

ĵ+ dvz
dt

k̂ = ax î+ay ĵ+azk̂ = ẍ̂i+ ÿĵ+ z̈k̂ (1.7.3)

where î, ĵ, and k̂ are the unit vectors.
When describing the motion of an object, two additional quantities become important,

the mass of the object and the net force acting on the object. The inertial mass of an
object minertial is a measure of the object’s inertia, where as the gravitational mass of
an object mgravitational is the mass that determines the gravitational force acting on it.
However,the weak principle of equivalence says that minertial =mgravitational.

A change in an object’s motion is caused by a nonzero net external force acting on the
object. Newton’s laws of motion describe how forces change the motion of an object.
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Newton’s First Law: A particle’s velocity remains constant if the net force acting on
the object is zero.

Newton’s second law: A particle’s time rate of change of momentum dp/dt, is equal to
the net force F applied to the particle :

F = dp/dt= ṗ (1.7.4)

Newton’s third law: If object 2 exerts a force F12 on object 1, then object 1 exerts a force
F21 on object 2 such that:

F21 =−F12 (1.7.5)

All measurements are made with respect to a reference frame. A reference frame is a
choice of origin (spatial x and temporal t), and a set of axes with respect to which all
measurements are made.

Two reference frames S, S′ are called inertial reference frames when Newton’s laws
hold, and the forces measured in S′ are the same forces as those measured in S.

Two reference frames S, S′ are called noninertial reference frames when Newton’s laws
no longer hold in their standard form, because there is an acceleration measured in S that
is not apparent in S′.

Computation is an important tool for physicists. In this book, we’ll focus on two
types of computation, symbolic and numerical. Symbolic computation involves using a
computer to help find closed-form solutions to differential equations, integrals, eigenvalues,
etc. Numerical computation or “numerics,” provides a list of numerical values representing
a solution to differential equations, integrals, eigenvalues, etc.

Computer programming languages can be loosely categorized as a computer alge-
bra systems, interpreted languages, and compiled languages. A computer algebra system
(CAS) is a software that can manipulate mathematical expressions, and can solve a vari-
ety of mathematical problems in closed-form. An interpreted language is one that can be
executed directly from the source code, using software called an interpreter. A compiled
language is one whose source code needs to be compiled by software called a compiler,
which transforms the source code into machine code.

1.8 END-OF-CHAPTER PROBLEMS
Section 1.2: The Basics of Classical Mechanics

1. A 0.50 kg particle’s position can be described using the vector function: r0 = 3t̂i−
2t2ĵ+ 7t−2k̂.

(a) What are the units of each of the coefficients in each component? Assume that
time is measured in seconds and position is measured in meters.

(b) Compute the velocity of the particle at t= 3 seconds.
(c) Compute the acceleration of the particle at t= 1 second.
(d) Find the force on the particle at t= 1 second.

2. Consider the position vector r = 3.0tρ̂ρρ, where ρ̂ρρ= cos φ̂i+sinφĵ and φ= φ(t). Compute
the velocity of the particle.

3. A particle’s position can be given by r(t) = Rcos(ωt) î +R sin(ωt) ĵ, where R and ω
are constants. Describe the path of this particle. What is the particle’s acceleration
as a function of time?
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Section 1.3: Newton’s Laws of Motion
4. Using Newton’s third law, explain why a gun recoils when it is fired. Explain why the

gun’s recoil velocity is smaller than that of the bullet.

5. Consider a universe where the weak equivalence principle was not true. How would
Newton’s universal law of gravitation be changed?

6. Using Newton’s laws, explain what would happen to the Earth’s trajectory if the Sun
were to suddenly disappear.

7. A ball is accelerating along the y-axis, in which direction is the net force acting on
the ball?

Section 1.4 Reference Frames
8. Consider a reference frame S, which is at rest and another reference frame S′ whose

origin is at a location r0 = ct2 î relative to the origin of S, where c is a positive constant.
A particle of mass m has a position in S′, which described by the vector function,
r′ = bt3 î, where b is a positive constant.

(a) Compute the acceleration of the particle as measured in each frame.
(b) Compute the force on the particle measured in each frame. Why are the two

forces different?

9. Consider a reference frame S, which is at rest and another reference frame S′, whose
origin is at a location r0 = at̂i+bt̂j relative to the origin in S, where a and b are positive
constants. Compute the velocity of a particle as measured in S, whose position in S′

is described by r′(t) =−ct2 î, where c is a positive constant.

10. Consider a reference frame S, which is at rest, and another reference frame S′, whose
origin is at a location r0 = 3t2 î− 5t3ĵ relative to the origin of frame S. A particle’s
position in S′ is described by the vector function, r′(t) = −t2 î + 3t2ĵ. Find the force
measured in each frame if the mass of the particle is m.

11. In the theory of special relativity, measurements between two inertial frames are
related by the factor γ = 1/

√
1−v2/c2, where c is the speed of light, and v is the

speed of the moving frame S′ relative to the rest frame S. For example, time passes at
different rates depending on the speed of an observer, by the rule: ∆t= γ∆t′, where
∆t is the interval of time measured in the rest frame S, and ∆t′ is the duration of
the same interval of time as measured in a moving frame S′. If a rocket leaves the
Earth and travels for 100 years, as measured by people on Earth, at a speed 0.75c,
how much time has passed for the travelers on the rocket?

12. In the theory of special relativity, we need to alter the transformation equations
between two frames. Let S be a rest frame, and S′ a frame moving at a speed v
relative to S. Suppose that S′ moves in the x direction, in other words, S′ moves
parallel to the x-axis of the frame S. The theory of special relativity then states that
measurements made in S and S′ are related by the formulas:

x′ = γ(x−vt)
y′ = y

z′ = z

t′ = γ
(
t− vx

c2

)
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where γ =
√

1−v2/c2. Now consider that two events in S occur at two locations x= 0
and x = a at time t = 0. Find the times of the two events as measured in S′. Notice
that events that are simultaneous in S are not simultaneous in S′. Which event was
seen first in S′?

Section 1.5 Computation in Physics
The problems in this section are different from the rest of the book. They are intended to
prepare you to better understand the computational aspects of this book. The problems
may be done in any language specified by your instructor. You may want to consider doing
some of the problems in Python and/or Mathematica so that you have some familiarity with
the code that appears throughout this text. As long as it is approved by your instructor,
online searches can be of significant help in solving these problems. Finally, these problems
are not exhaustive for the different types of problems you’ll encounter in this text. We will
introduce new algorithms and commands as they are needed.

13. Assign the values 5 and 6 to the variables, a and b. Then compute:

(a) a+ b

(b) b−a
(c) ab

(d) b/a

(e) ab

14. Compute the following:

(a) sin(0.25π)
(b) cos(0.25π)
(c) e3

(d)
√

7

15. Define an array (sometimes called a list) called t which contains the numbers 0 through
2π in steps of:

(a) 0.1
(b) 0.01
(c) 0.25

16. Define the function f(x) = e−mxcos(2πkx) and compute f(x) for three different com-
binations of values of x, m, and k.

17. Plot the function from Problem 16 with k = 1 and m = 0.5 for values x starting at
x = 0 and ending at x = 10. Note that you may need to create an array for x, and
that in that case use steps of 0.01. Label the axes and choose a color other than the
default for your curve. Save the resulting graph to a .jpg or .png file.

18. Plot f(x) = x2 and g(x) = x on the same graph for the range x = 0 to x = 10. Each
function should have its own color in the graph.
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19. A conditional statement is an important tool for helping computers deal with contin-
gencies. They take the form “if-then-else.” Conditional statements allow for computers
to do different things, depending on whether or not a condition is true. In other words,
if a condition is true, then do one thing, if it is not true (else) then do something dif-
ferent. For example, if a variable x is less than 5 assign the value 1 to the variable a;
otherwise, assign the value 0 to a. Write a code in which you assign a value to the
variable x and that prints “x is less than 5” if x < 5 , and prints “x is greater than or
equal to 5” if x≥ 5.

20. Using the conditional if statement, described in Problem 19, define the piecewise
function

f(x) =
{

0 x < 5
x2 x≥ 5

and evaluate f(x) for x= 3 and x= 7 and plot f(x) for the range x ∈ [0,10].

21. Computers are very good at repeating tasks over and over again, in a procedure called
a loop. The basic types of loops are for loops, do loops, and while loops. Using any
kind of loop, compute 6! (factorial) and display the result.

22. Using the methods learned from the problems above, compute the first 20 values of the
Fibonacci sequence. If you are unfamiliar with the Fibonacci sequence, do an online
search. You will need to use loops, and you may want to save your results into an
array. Look up how to append values to an array and how to recall specific values for
an array in the language of your choice.

23. Use symbolic computation to solve the following equations for x. Note that you will
get complex roots for some of the solutions.

(a) 7x+ 5 = 0
(b) x2−5x+ 2 = 0
(c) x3 + 7x−5 = 3

24. Use symbolic computation to solve for (x,y):

2x−5y = 7
x+y = 2

25. Use symbolic computation to solve the following differential equation for the unknown
function f(x):

df

dx
=−x2 + 3

with the initial condition f(x= 0) = 3. Plot the solution.

26. Numerically solve the differential equation:

df

dx
= 5sin(x)−4e−x

for the initial condition f(0) = 0. Plot the solution for x = 0 to 3 with a step size of
0.1.
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27. Numerically solve the coupled differential equations:

dx

dt
= 0.6x−1.2xy,

dy

dt
= xy−y,

using the initial conditions x(0) = 40 and y(0) = 7. Plot x as a function of time, y as
a function of time, and y as a function of x.

28. Use symbolic computation to perform the integral:∫
x2cos(x)dx.

29. Numerically evaluate the definite integral:∫ 2π

0
x2e2xdx.

30. Numerically evaluate the definite double integral:∫ 1

0

∫ 2

0
xydxdy.

If you are using Python, you will want to consider the nquad command from the SciPy
integrate library.

31. Numerically evaluate the integral:∫ 2

0

∫ 1−y

0
xydxdy.

As with Problem 30, you will want to consider using the nquad command if you are
using Python.
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