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A B S T R A C T   

An energy-level model consisting of an electron trap, a hole trap and a hole recombination center is proposed to 
explain the anomalous-fading effect of thermoluminescence which has been observed in several materials. The 
present model is related to a thermoluminescence glow-curve consisting of two peaks. The relevant set of coupled 
differential equations is considered and a set of the relevant parameters is chosen. The equations are solved both 
by making plausible analytical approximations and numerically by using a Matlab solver; the results of the two 
approaches are in very good agreement. The simulated sample is excited at 100K and then held at room tem-
perature or lower for different lengths of time before simulating the heating stage. It is found that as expected, 
the low-temperature peak at ~400K decays very quickly and quite anomalously, the high-temperature peak at 
~570K is also fading much faster than expected for a peak occurring at this temperature. The dependence on the 
fading temperature, an effect which has been found in some materials is also demonstrated in the simulations. 
The numerical simulations and the analytical approximations can explain these results and show why this 
decoupling between the peak temperature and the fading takes place.   

1. Introduction 

Normal fading of a thermoluminescence (TL) signal is the effect of 
reduction of the expected TL signal when the sample is held at a tem-
perature somewhat lower than that of the TL peak. The reason for this 
decay is the thermal release of trapped carriers and their subsequent 
recombination with opposite-sign carriers, all prior to the heating of the 
previously irradiated sample. An important condition for this normal 
fading is that the sample is held between the times of excitation and 
heating at a temperature rather close to that of the peak so that the 
thermal release of carriers from the relevant trap is quite fast. Normally, 
one does not expect such decay when the sample is held following the 
excitation at a temperature significantly lower than that of the peak. 
Several researchers found, however, that with certain TL materials, the 
signal decays quite fast when the sample is held at significantly lower 
temperatures. Putting it in a slightly different way, it was found that in 
these anomalous cases, the decay was much faster than expected for the 
effective trapping parameters determined from the shape or other 
properties of the TL peak in hand. The effect was termed "anomalous" or 
"abnormal" fading. 

The first report of anomalous fading was given by Bull and Garlick 
(1950) for UV excited TL in diamonds. Two peaks at 400 and 520K were 
found to yield lower light levels following 6 h storage at 90K. Hoogen-
straaten (1958) reported the decay of TL following rather short holding 
times at low temperature in ZnS samples doped with Cu, Co and Cl and 
explained it as being due to quantum mechanical tunneling of electrons 
from traps to holes in recombination centers. Schulman et al. (1969) 
reported the effect in CaF2:Mn. A similar effect was found by Kieffer 
et al. (1971) in organic glasses. It is worth noting that in the results 
mentioned so far, no temperature dependence of the anomalous fading 
was reported. 

Wintle (1973, 1977) has found the effect in various minerals at 
different temperatures and considered the implications with regards to 
the dating of archaeological samples. Wintle has suggested three alter-
native possibilities to explain anomalous fading: (a) defect diffusion 
which allows a non-radiative escape of trapped electrons when the 
diffusing defect encounters a trapping site; (b) direct transfer of an 
electron from a trap to an adjacent center as previously suggested by 
Garlick and Robinson (1972); (c) reduction in the number of effective 
recombination centers with time. These points have been further 
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considered by Jaek et al. (2007) who suggested that anomalous fading 
may not be explained by tunneling in some cases and maintained that 
other processes, in particular ionic processes may be the cause of the 
effect. It should be mentioned that the anomalous fading in feldspars 
described by Wintle is temperature dependent. 

Visocekas et al. (1983) have studied the afterglow in CaSO4:Dy and 
shown that after the initial irradiation, a weak afterglow is observed for 
a long period of time, with the same emission spectrum as the following 
TL. The peak used for dosimetry at 250 ◦C decayed with time practically 
independently of the temperature when the sample was held at tem-
peratures between 80K and room temperature (RT). Their explanation 
was that the afterglow and anomalous fading in this material results 
from a quantum mechanical tunneling effect. Stoneham and Winter 
(1988) and Bowman (1988) communicated on the effect in majolica in 
the context of authenticity testing in archaeology. 

A number of groups have investigated the anomalous fading in 
feldspars: Visocekas (2000), Meisl and Huntley (2005), Pagonis et al. 
(2012), Guérin and Visocekas (2015), Riedesel et al. (2021), Polymeris 
et al. (2022) and Devi et al. (2022). Kumar et al. (2022) considered the 
possibility that hole instability causes anomalous fading in feldspars. 
Different types of apatites have also exhibited the effect: Kitis et al. 
(2006), Tsirliganis et al. (2007), Sfampa et al. (2014), Polymeris et al. 
(2018). Comprehensive discussions on the existing models of anomalous 
fading have been given by Pagonis (2019, 2021). In a rather recent 
paper, Bringuier (2020) explains anomalous fading of TL in granitic 
feldspar as being due to a slight crystallographic disorder which en-
hances the decay of the TL signal. 

Chen and Hag-Yahya (1997) have offered a possible model which 
included an electron trap and three recombination centers, one radiative 
and two non-radiative. The competition of the non-radiative centers 
causes the radiative peak to be narrow and therefore it yields an effec-
tive activation energy and a frequency factor which are much higher 
than the real ones. As a result, when one expects very long decay time of 
the signal, one gets much shorter decay time according to the real pa-
rameters. The authors term this kind of anomalous fading a normal 
fading in disguise. 

In the present work we provide a rather simple alterative model that 
may explain temperature-dependent anomalous fading. We utilize a 
previous model (Chen et al., 2008; Lawless et al., 2021) developed for 
explaining effects of duplicitous TL peaks and of inability of exciting TL 
peaks in certain low temperature ranges. The model, explained in detail 
below, includes the possibility of thermal release of holes from hole 
traps in addition to the thermal release of electrons from their respective 
traps. The model bears some resemblance to the Schön-Klasens model 
(Schön, 1942; Klasens, 1946) in which the TL process includes both the 
thermal release of electrons into the conduction band and holes into the 
valence band. The possibility of having simultaneous release of electrons 
and holes from their respective traps has further been mentioned in the 
literature (e.g. McKeever et al., 1985; Mandowski, 2005). We show, 
using both results of numerical simulations and a theory with appro-
priate assumptions about the relevant parameters and approximations, 
that fading may occur at relatively low temperatures, for example, a 
peak occurring at 560K (287 ◦C) can fade significantly if the sample is 
held at room temperature for ~24 h. 

2. The model 

The proposed energy-level diagram is shown in Fig. 1. We consider 
an electron trap with concentration N (cm− 3) and instantaneous occu-
pancy n (cm− 3), activation energy E (eV), and frequency factor s (s− 1). 
The transition-probability coefficient from the conduction band into the 
trap is denoted by An (cm3s− 1). We also consider a hole trap with con-
centration M2 (cm− 3) and instantaneous occupancy of m2 (cm− 3), acti-
vation energy of releasing holes into the valence band Em2 (eV), 
frequency factor sm2 (s− 1) and hole trapping-probability coefficient B2 
(cm3s− 1). We assume that recombination of free electrons with holes in 

traps is allowed, and the probability coefficient is denoted by Am2 
(cm3s− 1). The recombination center concentration is M1 (cm− 3) with 
instantaneous hole concentration of m1 (cm− 3); the probability coeffi-
cient of holes from the valence band to get into the center is B1 (cm3s− 1) 
and the probability coefficient of recombination of electrons from the 
conduction band with holes in the luminescent center is Am1 (cm3s− 1). 
The concentration of electrons in the conduction band is denoted by nc 
(cm− 3) and that of the holes in the valence band is nv (cm− 3). The rate of 
production of electron-hole pairs by the irradiation is X (cm− 3s− 1) which 
is proportional to the excitation dose rate, and the total absorbed dose is 
therefore proportional to the total concentration of pairs produced, 
namely, D = X⋅tD (cm− 3) where tD (s) is the excitation time. 

The set of simultaneous differential equations governing the relevant 
processes is 

dn
dt

=An(N − n)nc − nγ, (1)  

dm1

dt
=B1(M1 − m1)nv − Am1m1nc, (2)  

dm2

dt
=B2(M2 − m2)nv − Am2m2nc − m2γm2, (3)  

dnc

dt
=X − An(N − n)nc − Am2m2nc − Am1m1nc + nγ, (4)  

dnv

dt
=X − B1(M1 − m1)nv − B2(M2 − m2)nv + m2γm2, (5)  

where 

γ = s exp(− E / kT), (6)  

γm2 = sm2 exp(− Em2 / kT). (7) 

We will assume that only recombination with the first center is 
radiative. Thus, the intensity, in units of photons emitted per unit vol-
ume per unit time (cm− 3s− 1) of emitted TL is given by 

I =Am1m1nc. (8)  

3. Theory 

For the conditions of our simulations (see Section 4), the following 
assumptions are well justified, 

Fig. 1. Energy-level diagram of the model explaining the anomalous-fading 
effect. N is the electron trap, M1 is the hole center and M2 is the hole trap. 
The other parameters are defined in the text. Transitions taking place during 
excitation are shown in solid lines and transitions occurring during heating in 
dashed lines. 
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m1 ≪ M1 and m2≪M2. (9) 

Under these assumptions, Eq. (5) shows that the lifetime of free holes 
is 1/(B1M1+B2M2). For the condition of the simulation, this is 10− 12s. 
This is much shorter than any time scale for irradiation, fading, or 
heating. The lifetime for free electrons is similarly short. Consequently, 
nc and nv will be small and the quasi-steady approximation applies, 

nc =
X + nγ

An(N − n) + Am2m2 + Am1m1
, (10)  

nv =
X + m2γm2

B1M1 + B2M2
. (11) 

In this case, the governing equations (1)–(3) reduce to 

dn
dt

=
An(N − n)

An(N − n) + Am2m2 + Am1m1
X −

Am2m2 + Am1m1

An(N − n) + Am2m2 + Am1m1
nγ,

(12)  

dm1

dt
=

B1M1

B1M1 + B2M2
(X +m2γm2) −

Am1m1

An(N − n) + Am2m2 + Am1m1
(X + nγ),

(13)  

dm2

dt
=

B2M2

B1M1 + B2M2
X −

Am2m2

An(N − n) + Am2m2 + Am1m1
(X + nγ)

−
B1M1

B1M1 + B2M2
m2γm2. (14) 

Each of the terms in Eqs. 12–14 has clear physical meaning. For 
example, from Eq. (13) which involves m1, (X + m2γm2) is the total rate 
at which free holes are created, X by irradiation and m2γm2 by thermal 
release from M2. The term B1M1/(B1M1+B2M2) is the fraction of those 
holes that are recaptured by m1. 

As initial conditions before irradiation, we assume that all traps, 
bands and centers are empty: n = m1 = m2 = nc = nv = 0. Charge con-
servation then requires n + nc = m1+m2+nv all along. When the quasi- 
steady approximation applies, the lifetimes of free electrons and holes 
are very short and the populations of free electrons and holes as given by 
Eqs. 10 and 11 become small. Consequently, nc << n and nv << 
m1+m2. Thus, charge conservation simplifies to 

n=m1 + m2. (15) 

Governing equations 12–15 will be the basis for the following sec-
tions which analyze irradiation, fading and heating and their effect on 
the two TL peaks. 

3.1. Irradiation at low temperature 

For irradiation at low temperature, terms involving γ or γm2 can be 
neglected. In this case, Eqs. 12–14 simplify to 

dn
dt

=
An(N − n)

An(N − n) + Am2m2 + Am1m1
X, (16)  

dm1

dt
=

B1M1

B1M1 + B2M2
X −

Am1m1

An(N − n) + Am2m2 + Am1m1
X, (17)  

dm2

dt
=

B2M2

B1M1 + B2M2
X −

Am2m2

An(N − n) + Am2m2 + Am1m1
X. (18) 

Each of the terms here have clear physical significance. For example, 
the first term on the right in Eq. (18); X is the rate at which free holes are 
created and B2M2/(B1M1+B2M2) is the fraction of those free holes which 
are captured by M2 and therefore adding to the concentration of the 
center, m2. X is also the rate at which free electrons are created and, in 
the second term on the right in Eq. (18), Am2m2/[An(N-n)+
Am2m2+Am1m1] is the fraction of those free electrons which end up 
recombining with m2 and therefore reducing the concentration of center 
m2. 

We have earlier assumed that the applied dose would be low enough 
that Eq. (9) applied. To simplify the equations, we will here further 
assume that the dose is low enough that 

Am1m1 +Am2m2≪AnN and n≪N. (19) 

Note that low dose assumptions Eq. (19) implies that the rate of 
trapping or retrapping of free electrons into n will be much larger than 
the rate of recombination of free electrons with either trap. Using Eq. 
(19), Eqs. 16–18 can be immediately integrated to obtain 

na =D, (20)  

m1a =
B1M1

B1M1 + B2M2
D, (21)  

m2a =
B2M2

B1M1 + B2M2
D, (22)  

where the subscript a is used to indicate that these values are at the end 
of irradiation and D is the dose, 

D=

∫ t

0
Xdt

′

. (23) 

In later sections, we will assume that 

B1M1≪B2M2. (24) 

Combined with Eqs. 21 and 22, Eq. (24) implies that, after irradia-
tion, m1a << m2a. This will help to simplify the math. 

In sum, subject to the low-dose assumption, Eq. (19), the trap and 
center populations at the end of irradiation are given by Eqs. 20–22. 
Note that under the described conditions, the results depend on the total 
dose applied and one does not expect dose-rate effects. 

3.2. Decay at mid-temperatures 

After irradiation, we allow the populations to decay at a temperature 
that is high enough so that γ is large enough to enable the release of 
electrons, but at still low enough temperature that γm2 is negligible. With 
X = 0 and γm2 negligible, Eqs. 12–14 reduce to 

dn
dt

= −
Am2m2 + Am1m1

An(N − n) + Am2m2 + Am1m1
nγ, (25)  

dm1

dt
= −

Am1m1

An(N − n) + Am2m2 + Am1m1
nγ, (26)  

dm2

dt
= −

Am2m2

An(N − n) + Am2m2 + Am1m1
nγ. (27) 

These equations are subject to the initial conditions, Eqs. 20–22. 
We can learn about the relative speed at which m1 and m2 decay by 

taking the ratio of Eq. (26) to Eq. (27) to find 

d ln(m1)

d ln(m2)
=

Am1

Am2
. (28) 

To both simplify the equations and to obtain the anomalous behavior 
that we want, we will assume 

Am1≫Am2. (29) 

The combination of Eqs. (28) and (29) means that, as decay proceeds, 
m1 will experience a large fractional decline before there is any signif-
icant fractional reduction in the population m2. Thus, for much of the 
decay of m1, we can consider m2 to be approximately constant. To 
proceed, let us simplify Eq. (26) using Eq. (19) to find 

dm1

dt
= −

Am1m1

AnN
nγ. (30) 

From charge conservation, n =m1+m2. Since, during the decay of m1, 
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the value of m2 is approximately unchanged from its initial value, m2a, 
and since, after irradiation, we have m1a << m2a, it follows that n ≈ m2a 
during this time. Thus, Eq. (30) can be immediately integrated to find 
the concentration m1 after tD seconds of decay, 

m1b =m1a exp
(

−
Am1m2a

AnN
γtD

)

, (31)  

where the subscript b is used to indicate a value at the end of decay. 
To find the decay of m2, let us combine the low dose approximation, 

Eq. (19) with Eq. (27) to find 

dm2

dt
= −

Am2m2

AnN
nγ. (32) 

Since charge conservation requires n = m1+m2, and since we have 
found that m1<<m2 is true for all of decay, we have n ≈ m2 and Eq. (32) 
can be immediately integrated to find m2 after tD seconds of decay, 

nb =m2b =
m2a

1 + Am2m2a
AnN γtD

. (33) 

In sum, Eq. (31) shows that m1b declines exponentially during decay 
while Eq. (33) shows that m2 decays more slowly, because Am1>>Am2, 
and at a power rate, not an exponential rate. 

3.3. Heating 

A theory to explain the anomalous glow curve during heating and the 
kinetics that causes it will be developed. We start with some general 
equations, solutions of which are valid over the whole heating process. 
We then present simpler theories to explain the peak shape and 
magnitude for the first peak and then for the second peak. It will be 
shown that, as heating starts, there is an initial drop in m1 as it recom-
bines with electrons thermally freed from n. This is responsible for the 
first peak. Later in the heating process, m1 is replenished from holes 
thermally released from m2 and this enables more recombinations be-
tween free electrons and holes newly added to m1. This process is 
responsible for the second peak. 

3.4. Governing equations for heating 

During heating with our chosen parameters, first γ and then γm2 
become important. Keeping both the γ and γm2 terms but setting X = 0, 
the governing equations for m1 and m2, Eqs. (13) and (14), reduce to 

dm1

dt
=

B1M1

B1M1 + B2M2
m2γm2 −

Am1m1

An(N − n) + Am2m2 + Am1m1
nγ, (34)  

dm2

dt
=

B1M1

B1M1 + B2M2
m2γm2 −

Am2m2

An(N − n) + Am2m2 + Am1m1
nγ. (35) 

From charge conservation, we know that n = m1+m2. Also applying 
the low dose assumption as given by Eq. (19), Eq. (35) reduces to 

dm2

dt
= −

B1M1

B1M1 + B2M2
m2γm2 −

Am2

NAn
γ(m1 +m2)m2. (36) 

At the end of radiation and decay, and thus at the beginning of 
heating, we found that m1<<m2. Let us consider the case where m1 is 
small enough that either 

m1≪m2, (37) 

or 

m1≪
B1M1

B1M1+B2M2
γm2

Am2
AnN γ

. (38) 

For the conditions of the numerical solution, one or the other of these 
two inequalities, Eq. (37) or Eq. (38) will be valid over the whole range 
of interest. Assuming that either Eq. (37) or Eq. (38), is valid, then Eq. 

(35) reduces to 

dm2

dt
= −

B1M1

B1M1 + B2M2
m2γm2 −

Am2

AnN
γm2

2. (39) 

With the initial condition for m2 provided by m2b in Eq. (33), we can 
integrate Eq. (39) (see Appendix A) to find 

m2 =m2b
f (T)

1 + Am2m2b
AnN

∫ T
T0

γ(T ′)f (T ′)dT ′
/

β
, (40)  

where a linear temperature profile with heating rate β (K/s) has been 
assumed and where f is an abbreviation for 

f (T)= exp
(

−
B1M1

B1M1 + B2M2

∫ T

T0

γm2(T ′)dT ′
/

β
)

. (41) 

Performing the integral yields 

f (T)=exp
(

−
B1M1

B1M1 +B2M2

Em2sm2

kβ
[Γ( − 1,Em2 /kT) − Γ( − 1,Em2 /kT0)]

)

,

(42)  

where Γ is the incomplete Gamma function 

Γ(a, x) =
∫ ∞

x
e− xza− 1dz. (43) 

As usual, if the trap n is thermally stable at T0, then the term Γ(-1, E/ 
kT0) quickly becomes negligible as temperature increases. 

To understand the meaning of f(T), consider Eq. (36) under a hy-
pothetical case in which γ = 0. In this case, m2 decays like the usual first- 
order trap and its population would be m2bf(T). Alternatively, under a 
hypothetical case in which γm2 = 0, then f(T) = 1. In this case, the so-
lution of Eq. (40) yields second-order behavior. The validity of Eq. (40) 
for the general case, γ∕=0 and γm2∕=0, can be verified by substitution of 
the solution, Eq. (40) into the differential equation (39). 

Next, we consider m1. Starting with the conservation equation for m1, 
Eq. (34), applying the low dose assumption, Eq. (19), and using charge 
conservation, n = m1+m2, we have, 

dm1

dt
=

B1M1

B1M1 + B2M2
m2γm2 −

Am1m2

AnN
γm1 −

Am1

AnN
γm1

2. (44) 

Since, as per Eq. (40), m2 is a known function of time, Eq. (44) is a 
first-order differential equation in a single variable, m1. It can be readily 
solved numerically. 

From Eq. (40) and Eq. (44), center concentrations m1 and m2 are 
known. Knowing these two and using charge conservation, we also know 
the trap population 

n=m1 + m2. (45) 

nc and nv can then be readily computed from Eqs. (10) and (11). For 
heating, X = 0, and after applying the low-dose assumption, Eq. (19), 
these simplify to 

nc =
nγ

AnN
, (46)  

nv =
m2γm2

B1M1 + B2M2
. (47) 

The intensity during heating can then be computed with Eq. (8). This 
provides a complete solution for heating. 

The next two subsections will examine the first and second peaks in 
more detail. 

3.4.1. First peak 
We will analyze the first TL peak to find both its magnitude and 

shape. For our chosen parameters, n becomes thermally unstable during 
heating before m2 does. This means that γ becomes significant before 
γm2. It is during this time that the first peak occurs. We will find that it 
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has a first-order shape with an energy matching that of the electron trap 
n but with a dose-dependent effective s value. 

During heating, we have X = 0 and, for the first peak, we have γm2 
negligible. Consequently, the same governing equations, (25) through 
(30) apply here as for the decay state. A difference is that γ, as given in 
Eq. (6), was a constant during decay, but, because it depends on tem-
perature, is a variable here during heating. Just as during decay, Eqs. 
(28) and (29) imply that a large drop in m1 occurs before there is a small 
change in m2 or n. Thus, during the first peak, we can assume that n is 
little changed from its initial value before heating. Combining these 
considerations together and using condition (19), the integral of Eq. (26) 
becomes 

m1 = nb exp
[

− seff

∫ t

0
exp( − E / kT(t′))dt′

]

, (48)  

where seff is defined by 

seff =
Am1nb

AnN
s, (49)  

where nb is the concentration of the electrons in the trap at the end of 
decay, Eq. (33). From Eq. (8), the intensity is I––Am1m1nc where m1 is 
given in Eq. (48) and nc is given by Eq. (46) with n = nb. Combining these 
considerations together with Eq. (6) and Eq. (48), an expression for in-
tensity becomes 

I = seff nb exp
[

−
E
kT

− seff

∫ t

0
exp( − E/kT(t’) )dt’

]

. (50) 

If we assume a linear temperature profile, T = T0+βt, the expression 
for intensity becomes (Lawless and Lo, 2001; Flores-Llamas and 
Gutiérrez-Tapia, 2013) 

I = seff nb exp
{

−
E
kT

−
Eseff

kβ
[Γ(− 1,E / kT) − Γ(− 1,E / kT0)]

}

, (51)  

where Γ is the incomplete Gamma function, Eq. (43), and as before, if 
the trap n is thermally stable at T0, then the term Γ(-1, E/kT0) is negli-
gible in Eq. (51) at the higher temperatures, T, at which the first peak 
occurs. 

Since we have n ≈ m2≈nb during peak 1, we know that the integrated 
intensity of peak 1 is much less than n. This does not necessarily mean 
that peak 1 is small compared to peak 2, though because, depending on 
parameters, the integrated intensity of peak 2 may also be less than n. 

In sum, the first peak exhibits first-order kinetics characterized by 
the energy of the electron trap, E, and an effective s given by Eq. (49). 
Note that, through nb, the effective s depends on both the initial dose and 
the decay time and temperature. The integrated intensity of the first 
peak is m1b. 

3.4.2. Second peak 
The radiative center, m1, is depleted during the first peak. The second 

peak occurs when m2 becomes thermally unstable, meaning that γm2 
becomes significant. Consequently, holes are thermally excited into the 
valence band, a fraction of which are captured by radiative center m1. 
When holes in the newly increased population in center m1 recombine 
with electrons being thermally excited from trap n, radiative emission 
grows resulting in the second peak. In this section, we will develop 
equations specific to the second peak, in particular the behavior of m1 
and intensity. 

During the second peak, Eq. (40) remains valid for the concentration 
of the second trap, m2. We will develop an equation for m1 valid for the 
rising portion of the second peak. We start with Eq. (13), using again 
condition (19) and setting X = 0 we find 

dm1

dt
=

B1M1

B1M1 + B2M2
γm2m2 −

Am1

AnN
γ(m2 +m1)m1. (52) 

At the conclusion of the first peak, m1 is depleted and m1<<m2. For 
as long as this remains true, Eq. (52) simplifies to 

dm1

dt
=

B1M1

B1M1 + B2M2
γm2m2 −

Am1m2

AnN
γm1. (53) 

Equation (53) shows that holes enter m1 through the valence band 
after they are thermally released from m1 and then holes are removed 
from m1 by recombination with free electrons thermally released from 
the electron trap. If the recombination rate is sufficiently high, then the 
lifetime of holes in m1 is short and the population of m1 will be quasi- 
steady. Under this condition, the two terms on the right-hand-side of 
Eq. (53) balance each other, 

B1M1

B1M1 + B2M2
γm2m2 ≈

Am1m2

AnN
γm1. (54) 

The term on the right in Eq. (54) is the radiative recombination rate 
of free electrons into center m1. This is the emission intensity. Equation 
(54) says that the intensity is approximately equal to the left-hand-side 
of Eq. (54) which is the rate at which holes are thermally freed from m2 
and captured by m1. If we solve Eq. (54) for the hole concentration in the 
radiative center, m1 we have 

m1 =
AnN
Am1

B1M1

B1M1 + A2M2

γm2

γ
, (55)  

where m1 denotes the quasi-steady value of m1. One of the assumptions 
used to derive Eq. (55) is that m1<<m2 which implies m2≈n. Note that 
m1 is independent of m2 or n. This is because it represents a balance 
between creation of m1 by thermal excitation from m2 and destruction of 
m1 by recombination with free carriers. The creation of m1, represented 
by the right-hand-side of Eq. (54) is proportional to m2. The destruction 
of m1, represented by the right-hand-side of Eq. (54) is proportional to 
m2⋅m1. Consequently, when we solve Eq. (54) to find m1, the factor of m2 
cancels out. 

To assess the accuracy of the quasi-steady approximation here, we 
will develop a first estimate of how small dm1/dt is by differentiating m1 
with respect to time using Eqs. (6) and (7) to find 

dm1

dt
= β

Em2 − E
kT2 m1 (56) 

As long as the quasi-steady approximation is valid, an improved 
approximation can be obtained by substituting Eq. (56) into Eq. (53) and 
solving for m1 to find 

m1 =
B1M1

B1M1 + A2M2
⋅

γm2m2
Am1m2

AnN γ + (Em2 − E)β
kT2

. (57) 

Using Eq. (57), we can obtain a better estimate of intensity. Using Eq. 
(8) for intensity, Eq. (10) for free electron concentration, nc, and Eq. (57) 
for m1, and remembering n ≈ m2, we have 

I =

⎡

⎢
⎢
⎣

Am1m2
AnN γ

Am1m2
AnN γ + (Em2 − E)β

kT2

⎤

⎥
⎥
⎦⋅
(

B1M1

B1M1 + A2M2
γm2m2

)

. (58) 

The quantity in square brackets in Eq. (58) is the correction to the 
quasi-steady approximation which, while the quasi-steady approxima-
tion is accurate, is just slightly less than one. The quantity in parentheses 
is the rate at which holes are released from m2 into the valence band and 
subsequently captured by m1. Thus, the intensity during this period is 
controlled by the rate at which holes are released from m2. The con-
centration of m2 is given by Eq. (40). 

Among the assumptions used to derive Eq. (58) was that m1<<m2. 
To assess the validity of this assumption, let us look again at Eq. (55). 
The only terms on the right-hand-side of Eq. (55) that vary with tem-
perature are the thermal excitation rates γ and γm2. For our chosen pa-
rameters we have 
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Em2 > E. (59) 

This means that γm2/γ will be small at low temperature but increase 
rapidly as temperature increases. Consequently, m1 grows as tempera-
ture increases at the same time that m2 is decreasing. This means that the 
m1<<m2 assumption will fail at a sufficiently high temperature during 
heating. For our chosen parameters, this happens after the second peak 
occurs. 

In sum, under the assumptions made, the intensity of the second peak 
is given by Eq. (58). During this time, the populations of m1 and m2 are 
given by Eqs. (57) and (40), respectively. 

3.4.3. Corrections for higher dose 
In previous sections, the analysis assumed, for simplicity, low dose: n 

<< N. Since the simulations were done with n/N = 0.1, one might 
expect that this assumption would cause an Ο(10%) error. We will 
develop here some first-order corrections for doses that are small but not 
very small. The formulas of the previous sections have the advantage of 

being simpler and therefore providing a clearer picture of dominant 
processes and how they interact. The formulas here are more complex 
but may be useful if one desires higher numerical accuracy. 

The first set of corrections is for the decay stage. We again start with 
Eqs. 25–27. We will again assume m1<<m2 which, by charge conser-
vation, implies that m2 = n. We will also again assume 
Am1m1+Am2m2<<AnN but, this time, we will not assume that n or m2 is 
small compared to N. In this case, Eq. (27) reduces to 

dm2

dt
= −

Am2m2
2

An(N − m2)
γ. (60) 

Equation (60) can be immediately integrated to find 

N
m2a

−
N
m2

− ln
(

m2

m2a

)

=
Am2

An
γtD, (61)  

where m2a is again the trap concentration at the start of decay. Equation 
(61) can be solved explicitly for m2 as follows, 

m2 =
− N

W− 1

[
− N

m2a
exp

(
− Am2

An
γtD − N

m2a

)] , (62)  

where W-1 is the k = − 1 branch of the Lambert W function.1 To obtain an 
improved estimate for m1, we integrate Eq. (28) to find 

m1

m1a
=

(
m2

m2a

)Am1/Am2

(63) 

Combining Eq. (62) with Eq. (63), we have 

m1 =m1a

⎡

⎢
⎢
⎣

− N/m2a

W− 1

[
− N

m2a
exp

(
− Am2

An
γtD − N

m2a

)]

⎤

⎥
⎥
⎦

Am1/Am2

. (64) 

Equations (63) and (64) agree well with the simulation as shown in 
Section 4. 

We also need to develop a dose correction to m2 for the heating stage. 

Starting with Eq. (35) and again assume m1<<m2 which, by charge 
conservation, implies that m2≈n and Am1m1+Am2m2<AnN but without 
assuming that m2 is small, we find 

dm2

dt
=

(
B1M1

B1M1 + B2M2
γm2

)

m2 −

(
Am2

An
γ
)

m2
2

N − m2
. (65) 

We can expand 1/(N-m2) in a Taylor series, 

1
N − m2

=
1
N

[

1+
m2

N
+
(m2

N

)2
+ ...

]

. (66) 

Using this expansion, Eq. (65) becomes 

dm2

dt
=

(
B1M1

B1M1 + B2M2
γm2

)

m2 −

(
Am2

AnN
γ
)

m2
2
[

1+
m2

N
+
(m2

N

)2
+ ...

]

. (67) 

After much math (see Appendix B) and neglecting terms of order 
(m2/N)2 or smaller, we find  

where t’ and t’’ are integration variables and m2,0 refers to the low-dose 
solution of Eq. (40). 

As discussed in Section 5, the analytical theory and the numerical 
simulation are in excellent agreement. 

3.5. Numerical-simulation results 

To demonstrate anomalous fading, we have chosen a set of plausible 
parameters and solved numerically the set of simultaneous differential 
equations (1)–(5) by using the Matlab solver ode23tb designed to solve 
stiff differential equations. The set of parameters chosen was (see Fig. 1): 
N = 1016cm− 3; An = 10− 5cm3s− 1; E = 0.385eV; s = 107s− 1; M1 =

1017cm− 3; Am1 = 2 × 10− 8cm3s− 1; B1 = 10− 7cm3s− 1; M2 = 1017cm− 3; 
Am2 = 10− 9cm3s− 1; B2 = 10− 5cm3s− 1; Em2 = 1.34eV; sm2 = 5 × 1012s− 1. 

Fig. 2. Simulated glow curves showing the anomalous fading effect. The 
simulated excitation was performed at 100K, the sample was then held for 
different periods of time at 300K and then the heating was simulated from 200K 
up. Intensities below 450K are multiplied by 10. Holding times at 300K are: (a) 
1s; (b) 103s; (c) 104s; (d) 105s; (e) 106s. 

m2 =m2,0 −

∫ t

0

Am2m2,0(t
′

)
3

N2 γ(t′)exp
(

−

∫ t′

0

[

2
Am2m2,0(t′′)

AnN
γ(t′′) +

B1M1

B1M1 + B2M2
γm2(t

′′)

]

dt′′
)

dt′, (68)   

1 To verify that the special function library is returning the desired branch, 
calculate W-1(-4exp(-4)). The correct result is − 4. 

J.L. Lawless et al.                                                                                                                                                                                                                               



Radiation Measurements 160 (2023) 106881

7

The rate of production of electron-hole pairs during irradiation was 
chosen as X = 5 × 107cm− 3s− 1 and the time of excitation tD = 2 × 107s, 
so that the total concentration of electron-hole pairs produced (to which 
the total dose is proportional) is D = 1015cm− 3. 

The simulated excitation was performed at 100K, the sample was 
then held for different periods of time at 300K and then the heating was 
simulated from 200K up. The results of the simulations are shown in 
Fig. 2. Note that the intensities below 450K have been multiplied by 10 
so that the behavior in this range can be seen. Curve (a) (red line) shows 
the results right after excitation, with fading time of 1 s. Curve b (green) 
shows the results following 103s fading time. The first peak has decayed 
to about half of the intensity whereas the second peak had only minimal 
decay. Curve c (blue) following 104s fading time shows that the first 
peak has practically vanished, and the second peak has lost ~12% of the 
intensity. In curve d (black) following 105 s decay the second peak is 
~40% of the original intensity. In curve e (cyan), following 106s the 
decay is down to ~5% of the initial intensity right after excitation. It is 
worth mentioning that the high-temperature peak shifts to higher tem-
perature as it fades, from ~560K to ~580K. Also, the peak shape 
changes gradually from having a nearly first-order appearance with 
short fading time to more like second-order shape following a longer 
decay time. 

Fig. 3 shows the dependence of the maximum TL intensity of the two 
peaks on fading time. Note that the time scale is logarithmic varying 
from 1s to 106s. The higher-temperature peak is seen to reduce to ~5% 
of its initial value in 106s whereas the low-temperature peak is practi-
cally nil after 104s. 

Fig. 4, based on the equations of subsection 3.3.1, shows the same 
two peaks, at ~400K and ~560K as determined by the approximate 
theory. The fading times are the same as in Fig. 2. Like in the presen-
tation of the numerical solution of the differential equations, following 
this decay time, the first peak practically disappears after decay time of 
104s and the intensity of the second peak reduces to ~40% of the initial 
intensity. The close similarity between the curves in Figs. 2 and 4 which 
includes the temperatures of occurrence of the two peaks and their 
relative intensity, attests to the correctness of the two approaches. The 
difference between the intensities in Figs. 2 and 4 is seen to be less than 
4%. 

Fig. 5 shows the decay of the occupancies with holding time up to 
105 s at 300K. Since m1 is much smaller than m2, n and m1 behave in 
practically the same way during this time span, decaying rather 

significantly. The values of m1 have been multiplied by 100 so that the 
fast decaying curve can be seen on the same graph. It is shown that 
practically the same results were reached by the numerical simulation 
and by the theoretical approach with approximations. 

3.6. Analysis of the results 

We would like to consider the analysis of the numerical results. It is 
quite obvious that the TL peaks we see may not be of first or second- 
order and, for that matter, neither have exactly the shape of a general- 
order peak. However, we do have a TL peak which has a conventional 
shape, which may be close to being symmetric similarly to a second- 
order peak or be asymmetric, looking like a first-order peak, or any-
thing in between. Not having better tools in hand, we have used the 
available ones to get the effective activation energy, frequency factor and 
order of kinetics. 

Fig. 3. Dependence of the maximum simulated TL intensities on the fading 
time. (a) is for the low-temperature peak and (b) for the higher temperature 
peak. Holding temperature was 300K. 

Fig. 4. The glow peaks determined by the theory, Eq. (51) (first peak) and Eq. 
(58) (second peak) following the same decay times as in Fig. 2. Here, tH in-
dicates holding time. 

Fig. 5. The dependence of the traps and center occupancies after excitation as a 
function of holding time at 300K, as determined by the numerical solution of 
Eqs. (1)–(5), following the simulated excitation, and by the analytical approach, 
on a semi-logarithmic scale. The concentrations n and m2 are nearly the same 
since m1, nc and mv are relatively small. The solid black lines represent the 
simulation and the grey lines show the results of the theory. 
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A simple home-made curve-fitting program has been used to eval-
uate the three mentioned effective parameters of the second peak (see e. 
g. Shenker and Chen (1971)). We have simulated a glow curve with a 
heating rate β1 = 1K/s. The curve-fitting yielded the following effective 
parameters for the peak at 561K: Eeff = 1.25eV; μg = 0.445; seff = 8.5 ×
109s− 1. It should be mentioned that although in this case, the shape 
factor μg is in the range between that of first- and second-order 
(0.42–0.52), it is much closer to being of first order. The activation 
energy and frequency factor may be compared to the values of Em2 =

1.34eV; sm2 = 5 × 1012s− 1. The differences between the evaluated E and 
s and the inserted ones should not be surprising; the complex situation of 
transitions of both electrons and holes influences the results, which is 
reflected in the magnitude of the effective parameters. 

Another way of analyzing a glow peak is by using the different 
heating rates method. We then simulated the glow curve with β2 = 2K/s 
and the second peak occurred at 575.4K. We have then used the well 
known equation for evaluating the activation energy from two heating 
rates measurement (see e.g., Booth (1954)), 

Eβ = k
T1T2

T1 − T2
ln

[
β1

β2

(
T2

T1

)2
]

. (69) 

Substituting the two maxima temperatures T1, T2 and the two heat-
ing rates (1 and 2K/s), this yielded Eβ = 1.24eV, with rather surprising 
agreement with the value reached by the peak-shape method and not too 
far from the inserted value of Em2 = 1.34eV. 

It was also interesting to analyze the low temperature peak by the 
same curve fitting method. For the same excitation of X = 5 ×
107cm− 3s− 1 and tD = 2 × 107s, we found Eeff = 0.42eV, with reasonably 
good agreement with the inserted value of E = 0.385eV. The effective 
frequency factor was found to be seff = 8 × 103s− 1, about three orders of 
magnitude smaller than the inserted one. Here, however, we have to 
consider Eq. (49) which shows that seff depends on s, An, Am1, N, and nb. 
Since the latter depends on the dose, it is obvious that seff may get 
different values, depending on the dose. The symmetry factor has been 
found to be μg = 0.465, intermediate between the symmetry of first and 
second order peaks. Due to the rather complex process taking place here, 
this value which indicates an effective order of kinetics of ~1.5, should 
not be considered strange. 

Another feature of the simulated peaks that was tested was the dose 

dependence. The results are shown in Fig. 6. With a constant time of 
excitation of tD = 2 × 107s and different dose rates X varying from 2.5 ×
106cm− 3s− 1 in curve (a) and multiplied by factors of 2 in successive 
curves (b-e). At the low dose, the peak shape looks approximately as a 
second-order peak and it also shifts to lower temperature with 
increasing dose, again, typical of second-order kinetics. At higher doses, 
the shape as seen by the symmetry of the peak has first-order features, 
and there is no further temperature shift of the maximum. As for the 
dose dependence, it starts being nearly linear at low doses and becomes 
sublinear at higher doses. It seems that this does not represent real 
approach to saturation. In the highest-dose peak shown, the initial 
concentration of electrons before heating was recorded and it was n0 =

1.6 × 1015 cm− 3, which is only 16% of the trap concentration, N =
1016cm− 3. m20 is nearly the same as n0 and m10~1013cm− 3. M1 and M2 
are 1017cm− 3 and therefore their relative initial occupancy before 
heating is significantly lower. The sublinearity should therefore be 
ascribed to dynamic equilibrium rather than real saturation. 

We have also looked for a possible dose-rate effect. For one of the 
doses, we increased the dose-rate by a factor of 10 and decreased the 
time of excitation by the same factor of 10. The results came out iden-
tical, meaning that no dose-rate effect occurred, as suggested in section 
3.1 above. 

Finally, Fig. 7 has a similar appearance to Fig. 6, but depicts a 
different feature, namely, the fading-temperature dependence of the 
simulated TL curve. The excitation is the same in all the cases shown, 
namely, excitation is at a rate of X = 5 × 107cm− 3s− 1 and for a time tD =

2 × 107s. The time of fading is 105s in all the curves and the excitation 
temperature is 100K. The fading temperatures were (a) 290K; (b) 300K; 
(c) 310K; (d) 320K; (e) 330K; (f) 340K; the strong dependence on the 
fading-temperature is clearly seen. 

4. Discussion 

In the present work, we propose an energy level model consisting of 
an electron trap, a hole trap and a hole luminescence center to explain 
the anomalous-fading effect occurring quite often in thermolumines-
cence (TL) materials. We assume that in the range of occurrence of the 
glow curve, electrons can be released from an electron trap into the 
conduction band and holes from a hole trap into the valence band. As 
mentioned above, the present model resembles to some extent to that 
previously suggested by Schön and Klasens. However, their model 

Fig. 6. Dose dependence of the simulated glow curve. The simulated time of 
excitation was 2 × 107s and the excitation dose rates (X) were: (a) 2.5 ×
106cm− 3s− 1; (b) 5 × 106cm− 3s− 1; (c) 1 × 107cm− 3s− 1; (d) 2 × 107cm− 3s− 1; (e) 
4 × 107cm− 3s− 1; (f) 8 × 107cm− 3s− 1. 

Fig. 7. Dependence of the simulated glow curves on the temperature of fading. 
The temperatures were: (a) 290K; (b) 300K; (c) 310K; (d) 320K; (e) 330K; 
(f) 340K. 
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includes only two energy levels (see also McKeever, 1985, P. 61) and the 
present model has the three participating energy levels seen in Fig. 1. 
The transitions of the two kinds of charge carriers during the different 
steps of the simulated experiment are seen to produce the anomalous 
effect. The results of the simulations show directly the anomalous fading 
effect of the high-temperature peak. When the simulated sample is held 
close to room temperature, at 300K, the second peak in the range of 
560–580K (around 300 ◦C) decays to ~1/e of its original intensity in 
~105s, or ~28 h. As can be seen in Fig. 2, the shape of the peak varies 
with fading times, and therefore, analysis based on the shape of the peak 
does not yield a unique expected decay time. However, the effective 
values we found by the analysis were between 1011 and 1015s, many 
orders of magnitude higher than the decay times of ~105s found in the 
simulations, hence the anomalous behavior. Obviously, even without 
relating to these numbers, it is evident that decay to ~1/e of a peak 
occurring at ~300 ◦C when the sample is held at RT for 28 h is anom-
alous. It should be noted that the results of the numerical simulations are 
reached without any simplifying assumptions or approximations. Putt-
ing it in a different way, a peak with apparent activation energy of 
1.24eV fading significantly at 300K definitely means anomalous fading. 

As for the analytical approach with approximations, from Eq. (33) 
we know that the fading of m2b is controlled by the E and s of the electron 
trap. Because E is small, m2b is fading at low temperature. m2b appears 
twice in Eq. (40), and when it decays, obviously the TL intensity decays 
as well. From Eq. (40) we see that the glow curve is delayed until the 
second trap, characterized by Em2, sm2, becomes thermally unstable. 
Because Em2 is large, the glow peak occurs at high temperature. In sum, 
fading is controlled by E and s while the peak temperature is strongly 
influenced by Em2 and s2. Thus, under this energy-level model, the fading 
and the peak temperature are partly decoupled from each other. Note 
that the present model explains the temperature-dependent fading 
which, as described above, occurs in some materials. Examples of 
temperature-dependent anomalous fading have been given by Wintle 
(1977). The dependence of the glow curves on the temperature of fading 
as shown in Fig. 7 is as expected from the model and in qualitative 
agreement with the temperature-dependent experimental results 
appearing in the literature and mentioned in the introduction. 

As pointed out above, using the two approaches of numerical solu-
tion of the differential equations and the theoretical approach with ap-
proximations yielded very similar glow curves. This includes the 
occurrence of the two peaks at ~400K and ~560K, their relative in-
tensities and the fading behavior with time. Note that with the higher- 
dose correction, there is a difference of less than 4% in the simulated 
intensity between the two approaches as seen in curve (a) in Fig. 2 and 
the solid line in Fig. 4. This small difference can be attributed to the 
approximations in the theoretical approach and perhaps to some inac-
curacy in the numerical solution as well. Thus, the curves as shown on 
Figs. 2 and 4 are practically the same with the two peaks occurring at the 
same temperatures, and with the same relative intensities and the same 
shapes. 

To get a better insight into the process that takes place during the 
heating, following fading time, we have plotted the occupancies m1. m2, 
nc, nv and the intensity I in Fig. 8 as functions of temperature. Note that n 
is not shown since along most of the range it nearly coincides with m2. 
The occurrence of the TL peak in this system is associated with the peak 
shape of m1 and nc. The TL peak is proportional to the product m1 × nc 
(see Eq. (8)). As seen in these two figures, m1 has a peak at ~575K and nc 
at ~528K. The resulting TL peak which is their product appears in be-
tween, at ~560K. An important fact to note here is that the values of n, 
m1 and m2 are more than six orders of magnitude larger than nc, a point 
that we used in the approximations. 

It is clear that the evaluated activation energy of ~1.25eV is closer to 
the inserted hole activation energy than to that of the electrons which 
seems to show that although the process is of electrons being released 
and recombining with holes in centers, the limiting factor is the avail-
ability of holes coming from the hole trap, and recombining after a short 

stay in M1. In more detail, immediately after the first peak subsides, the 
electrons released from the trap N recombine primarily with holes in M2 
releasing, as we assumed, no radiation. The trap population, n, continues 
its radiationless decline until m2 becomes thermally unstable. Because 
Am1>>Am2, holes in M1 stay only a short time before they recombine 
with electrons in N, releasing radiation. This creates the second peak. 
The "recombination after short stay in m1

′′ is the basis for the quasi- 
steady assumption for m1 during the second peak, expressed as Eq. 
(54) above. 

As pointed out above, the present energy-level model of anomalous 
fading is the same as that previously published by Lawless et al. (2021) 
on the inability to excite in some cases a relatively high-temperature 
peak at a certain range of temperatures of excitation. The ranges of 
the chosen sets of trapping parameters used to demonstrate the two 
effects have been quite different. It is not surprising, however, that the 
two effects can be explained by the same model since the effects 
described are closely related. In the former, the higher temperature peak 
from a set of two peaks diminishes very quickly at rather low temper-
atures and in the latter, the second peak of the two cannot be excited to 
begin with. 

5. Conclusions 

The present model is a possible alternative to the mentioned model of 
tunneling. There is no claim here that there is something wrong with the 
tunneling model for explaining anomalous fading; we only suggest the 
present model as a viable alternative. Since tunneling is a localized 
transition and the present model deals with delocalized transitions, we 
suggest that in an experiment, two contacts are applied to the sample 
and the thermally stimulated conductivity (TSC) will be measured. If no 
TSC is measurable, probably it is tunneling whereas the occurrence of a 
TSC peak would indicate the present model. 

In conclusion, the results of this model gave a normal-looking TL 
peak which yielded reasonable effective parameters and rather normal 
dose dependence and lack of dose-rate dependence. The main new 
feature of the model is the occurrence of anomalous fading effect 
whereby, a peak occurring at ~300 ◦C (573K) and having an apparent 
activation energy of ~1.25 eV decays quite significantly when the 
sample is held at room temperature within 24 h in the given example. 

Fig. 8. With the same parameters, the temperature dependence of the occu-
pancies m1, m2, nc and nv along with the TL intensity I as determined by the 
numerical solution of the differential equations and the analytical approxima-
tion approach are shown during the heating stage on a semi-log scale. The solid 
black lines represent the results of the simulation and the grey lines show the 
results of the theory. 
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Appendix A. Derivation of Eq. (40) 

Let us define abbreviations a and b, 

a=
Am2

AnN
γ and b =

B1M1

B1M1 + B2M2
γm2. (A1) 

With these definitions, Eq. (36) can be written as 

dm2

dt
= − am2

2 − bm2, (A2)  

where a = a(t) and b = b(t) are functions of time. Equation (A2) is a nonlinear first-order differential equation with variable coefficients. To solve it, the 
first step is to convert it to a linear differential equation. To do this, we first define a new variable f = f(t) by 

f = exp
(

−

∫ t

0
b(t′)dt′

)

, (A3)  

where t’ is a variable of integration. It follows that 

b= −
1
f

df
dt

. (A4) 

Substituting Eq. (A4) into Eq. (A2) and rearranging to place the derivatives on one side, one gets 

m2

f
df
dt

−
dm2

dt
= am2

2. (A5) 

Multiplying both sides of Eq. (A5) by f/m2
2, we have 

1
m2

df
dt

−
f

m2
2

dm2

dt
= af . (A6) 

Equation (A6) can be simplified to 

d(f/m2)

dt
= af . (A7) 

If we define a new variable y = f/m2, we can see that Eq. (A7) becomes a linear differential equation, 

dy
dt

= af . (A8) 

Equation (A8) can be immediately integrated to find 

y(t) − y(0)=
∫ t

0
a(t′)f (t′)dt′, (A9)  

where t’ is again a variable of integration. If we replace y with its definition, f/m2, Eq. (A9) becomes 

f
m2

−
1

m2b
=

∫ t

0
a(t′)f (t′)dt′, (A10)  

where we have used the fact that, from Eq. (A3), the value of f at t = 0 is f(0) = 1. Finally, solving Eq. (A10) for m2, we find 

m2 =
m2,0f

1 + m2,0
∫ t

0 a(t′)f (t′)dt′
. (A11) 

If we convert the independent variable from time t to temperature T and use the definition of a from Eq. (A1), then Eq. (A11) becomes Eq. (40) in 
the main text. Similarly, substituting the definition of b from Eq. (A1) and changing independent variable, Eq. (A3) becomes Eq. (41). 

Appendix B. Perturbation Expansion 

First, let us note that Eq. (67) has the form 

dm2

dt
= − bm2 − am2

2

[

1+ ε m2

m2b
+ ε2

(
m2

m2b

)2

+ ...

]

, (B1) 
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where a = a(t) and b = b(t) are known functions of time, m2b is the concentration of m2 at the start of heating, and where we have defined 

ε=m2b

N
. (B2) 

ε is the fraction of trap N that is occupied after the end of decay. Note that, during heating, m2≤m2b and thus the second term in the square brackets 
in Eq. (B1), εm2/m2b, is, during heating, no longer larger than ε. We will treat ε as a small parameter and obtain the first order to m2 for ε being small 
but non-zero. According to Eq. (B2), m2 will be a function of time and of ε, 

m2 =m2(t, ε). (B3) 

m2 is subject to the initial condition 

m2(0, ε)=m2b. (B4) 

We expand Eq. (B3) into a power series in ε, 

m2 =m2,0(t) + εm2,1(t) + ε2m2,2(t) + ... (B5)  

where m2,0, m2,1, m2,2 and so on are as-yet-undetermined functions of time. This approach is called a perturbation expansion. Perturbation expansions 
are used in many fields of physics including quantum mechanics, see Chap. 16 of Messiah (1963) or Chap. 17 of Merzbacher (1970) and fluid me-
chanics, Sears (1960). See also Part 3 of Bender and Orszag (1978). It is important to note that m2,0, m2,1, m2,2 …, are not functions of ε. Substituting Eq. 
(B5) into Eq. (B1), we find 

dm2,0

dt
+ ε dm2,1

dt
+ ε2dm2.2

dt
+ ...= − b

[
m2,0(t)+ εm2,1(t) + ε2m2,2(t)+ ...

]

− a
[
m2,0(t) + εm2,1(t) + ε2m2,2(t) + ...

]2

[

1+ ε
(

m2(t)
m2b

)

+ ε2
(

m2(t)
m2b

)2

+ ...

]

. (B6) 

After collecting together terms with the same powers of ε, Eq. (B6) becomes 
[

dm2,0

dt
+ am2,0

2 + bm2,0

]

+ ε
[

dm2,1

dt
+ 2am2,0m2,1 + am2,0

3 / bm2.1

]

+Ο
(
ε2)= 0. (B7) 

Note that, by assumption, nothing inside the square brackets depends on ε. For Eq. (B7) to remain true for varying values of ε, it must be that each 
quantity in square brackets is zero separately.2 Taking the first square brackets in Eq. (B7) and setting it to zero, we have 

dn0

dt
= − am20

2 − bm20. (B8) 

Taking the second square bracket and setting it to zero we get 

dm2,1

dt
+
(
2am2,0 + b

)
m2,1 = − am2,0

3 /m2b. (B9) 

For each differential equation (B8) and (B9), we need initial conditions. Substituting Eq. (B5) into Eq. (B4), we have 

m2b =m2,0(0) + εm2.1(0) + ε2m2,2(0) + ... . (B10) 

Again, collecting terms with the same power of ε, 

0=
[
m2,0(0) − m2b

]
+ ε

[
m2,1(0)

]
+ ε2[m2,2(0)

]
+ ... . (B11) 

Again, no term inside the square brackets depends on ε. If Eq. (B11) is to be valid even as ε varies, it follows that each square bracket must be zero 
separately. Taking just the first two brackets one gets 

m2,0(0)=m2b, (B12)  

m2,1(0)= 0. (B13) 

The first step is to solve Eq. (B8) subject to initial condition Eq. (B12). The solution is given by Eq. (A10), 

m2,0 =m2,b
f (t)

1 +

∫t

0

a(t′)f (t′)dt′
(B14) 

The next step is to solve Eq. (B9) subject to initial condition (B13). Equation (B9) is a linear first-order differential equation with variable co-
efficients. By standard methods, (Ince, 1956), its solution is 

m2,1 = −

∫ t

0

a(t′ )m2,0(t
′

)
3

m2b
exp

(

−

∫ t′

0

[
2a(t′′)m2,0(t′′) + b(t′′)

]
dt′′

)

dt′ . (B15) 

Equation (B15) provides the first-order-in-ε correction to m2 for non-zero dose. We will neglect higher order corrections. To obtain our final 

2 Equation (B7) is a polynomial in variable ε. It is a theorem of linear algebra that, if a polynomial of a continuous variable is zero everywhere, then each of its 
coefficients must be zero. 
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estimate for m2 during heating, we substitute solutions Eq. (B14) and Eq. (B15) into Eq. (B5) and use the definitions in Eq. (B2) and (A1). The result is 
expressed in Eq. (68). 
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