Luminescence: Data analysis and modeling


 

 

 

 

 

 

 

 

 

​This book features  99 detailed examples of R code fully integrated into the text, with extensive annotations. The book shows how researchers can use available R packages to analyze their experimental data, and how to extract the various parameters describing mathematically the luminescence signals.

The complete R codes which reproduce the figures in the book can be found at this GitHub website:

https://github.com/vpagonis/Springer-R-book

The complete R codes can also be downloaded as a SINGLE ZIPPED file at the Zenodo repository website: ZenodoPagonisSpringer

The book is available at the Springer website springer.com/us/book/9783030673109

Here is a complete List of the various R codes in the book:

2.1 System of differential equations for OTOR . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2 ODE for TL: First order kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3 First order TL by varying the initial trap concentrations (tgcd) . . . . . . .
2.4 Second order TL by varying the initial trap concentrations (tgcd) . . . .
2.5 First and second order TL with the same parameters . . . . . . . . . . . . . . . . . .
2.6 The initial rise method: find energy E from TL data . . . . . . . . . . . . . . . . . . .
2.7 TL glow curve for four different heating rates . . . . . . . . . . . . . . . . . . . . . . . . .
2.8 Apply heating rate method to TL data, to find E, s . . . . . . . . . . . . . . . . . . . .
2.9 The GOT equation for TL in OTOR (deSolve) . . . . . . . . . . . . . . . . . . . . . . . . .
2.10 Plot the W0-Lambert solution of GOT equation . . . . . . . . . . . . . . . . . . . . . . .
2.11 Deconvolution of Glocanin glow curve (tgcd) . . . . . . . . . . . . . . . . . . . . . . . . .
2.12 Deconvolution of TL user data (.txt file, tgcd) . . . . . . . . . . . . . . . . . . . . . . . . .
2.13 Deconvolution of 9-peak Glocanin TL data (tgcd) . . . . . . . . . . . . . . . . . . . . .
2.14 MOK deconvolution of Glocanin TL (tgcd) . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.15 Combine three plots for isothermal experiment . . . . . . . . . . . . . . . . . . . . . . . .
2.16 Single MC plot for delocalized TL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.17 MC for delocalized TL: multiple parameters . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.1 Fitting two-component CW-OSL signal (numosl) . . . . . . . . . . . . . . . . . . . . .
3.2 Fitting three-component CW-OSL signal (Luminescence) . . . . . . . . . . . .
3.3 Solve the GOT equation for CW-OSL (deSolve). . . . . . . . . . . . . . . . . . . . . . .
3.4 Plot of the Lambert W function solution for CW-OSL in the GOT model . .
3.5 Single plot MC for delocalized CW-OSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.6 Single plot MC for delocalized CW-OSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.7 Combine two plots from RlumCarlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.8 MC for delocalized CW-OSL: multiple parameters . . . . . . . . . . . . . . . . . . . .
3.9 Solve the GOT equation for LM-OSL (deSolve) . . . . . . . . . . . . . . . . . . . . . . .
3.10 Plot W0(x) solution of GOT equation, for LM-OSL. . . . . . . . . . . . . . . . . . .
3.11 Analysis of three-component LM-OSL signal (numOSL) . . . . . . . . . . . . .
3.12 Fit LM-OSL data with three first order components (Luminescence)
3.13 Transform CW into pseudo-LM data (.txt data file). . . . . . . . . . . . . . . . . . . .
3.14 CW-IRSL into pseudo-LM-IRSL data (Luminescence package). . . . . .

4.1 Fit dose response data with saturating exponential. . . . . . . . . . . . . . . . . . . . .
4.2 Irradiation: OTOR, Lambert analytical solution . . . . . . . . . . . . . . . . . . . . . . .
4.3 Fit of experimental TL dose response data using W(x) . . . . . . . . . . . . . . . .
4.4 Fit of experimental ESR dose response data using Lambert equation
4.5 Fit of experimental OSL dose response data using W(x) . . . . . . . . . . . . . .
4.6 Irradiation of thermally unstable trap (OTOR) . . . . . . . . . . . . . . . . . . . . . . . . .
4.7 TL dose response of anion deficient aluminum oxide . . . . . . . . . . . . . . . . .
4.8 Fit to Supralinearity index f(D) using Lambert W . . . . . . . . . . . . . . . . . . . . .

5.1 Analysis of TR-OSL experimental data in quartz . . . . . . . . . . . . . . . . . . . . . .
5.2 Analysis of TR-OSL experimental data in alumina . . . . . . . . . . . . . . . . . . . .
5.3 Fit microcline TR-IRSL data with analytical equation . . . . . . . . . . . . . . . .
5.4 Simulation of TR-PL experiments in Al2O3:C . . . . . . . . . . . . . . . . . . . . . . . .

6.1 The nearest neighbors distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.2 Time evolution of the nearest neighbors distribution . . . . . . . . . . . . . . . . . .
6.3 Ground state tunneling: Remaining electrons n(t) . . . . . . . . . . . . . . . . . . . .
6.4 Anomalous fading (AF) and the g-factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.5 Simultaneous irradiation and anomalous fading in nature . . . . . . . . . . . . .
6.6 CW-IRSL data fitted with the KP-CW equation . . . . . . . . . . . . . . . . . . . . . . .
6.7 Kitis–Pagonis analytical equation for TL (KP-TL) . . . . . . . . . . . . . . . . . . . .
6.8 Single plot MC simulations for tunneling CW-IRSL . . . . . . . . . . . . . . . . . .
6.9 Combining two plots in CW-IRSL experiment. . . . . . . . . . . . . . . . . . . . . . . . .
6.10 MC for tunneling ITL: remaining electrons . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.11 Single plot MC simulations for tunneling LM-OSL . . . . . . . . . . . . . . . . . . .
6.12 Simulation of TL from pretreated sample . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7.1 Plot W(x) solution of LT model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.2 Single plot MC simulations for localized CW-IRSL (LT model). . . . . .
7.3 Single plot MC simulations for localized LM-OSL. . . . . . . . . . . . . . . . . . . .
7.4 Localized TL with variable retrapping ratio r . . . . . . . . . . . . . . . . . . . . . . . . . .
7.5 Mandowski SLT model: simulation of TL experiment . . . . . . . . . . . . . . . .
7.6 Mandowski model: the anomalous heating rate effect . . . . . . . . . . . . . . . .
7.7 Pagonis SLT model: the anomalous heating rate effect . . . . . . . . . . . . . . .

8.1 Simple MC implementation of CW-OSL process . . . . . . . . . . . . . . . . . . . . .
8.2 Populations P(j) of stochastic simple death process. . . . . . . . . . . . . . . . . . . .
8.3 Plots of stochastic simple death process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.4 Vectorized MC implementation of CW-OSL . . . . . . . . . . . . . . . . . . . . . . . . . .
8.5 Vectorized MC implementation of TL . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.6 Vectorized MC implementation of LM-OSL . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.7 Vectorized MC code for TL in GOT model . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.8 Vectorized Irradiation MC code in GOT model . . . . . . . . . . . . . . . . . . . . . . . .

9.1 Vectorized MC code for tunneling TL transitions (TLT model) . . . . . . . . . . .
9.2 Vectorized MC code for tunneling CW-IRSL transitions (TLT model) . . . . .
9.3 Vectorized MC code for tunneling LM-IRSL transitions (TLT model) . . .
9.4 Vectorized MC code for TL in localized TL transitions (LT model) . . . . . .

10.1 Stochastic CW-OSL process using KMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.2 Stochastic LM-OSL process using KMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.3 Stochastic first order TL process using KMC . . . . . . . . . . . . . . . . . . . . . . . . .
10.4 Microscopic description of quantum tunneling . . . . . . . . . . . . . . . . . . . . . . . .

11.1 Natural history of quartz sample Pagonis2008 model . . . . . . . . . . . . . . . . .
11.2 Thermal quenching of TL signal in quartz (KMS) . . . . . . . . . . . . . . . . . . . . .
11.3 TL dose response of quartz sample (KMS). . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.4 Dose Response of quartz OSL signal, Bailey2001 model . . . . . . . . . . . . .
11.5 Superlinearity in annealed quartz samples . . . . . . . . . . . . . . . . . . . . . . . . .
11.6 Phototransfer phenomenon using Bailey2001 model . . . . . . . . . . . . . . . . . .
11.7 The Zimmerman model: thermal transfer of holes in quartz . . . . . . . . . .
11.8 Simulation of pulse annealing experiment with Bailey2001 model . . . . . . .
11.9 SAR protocol using the Pagonis model in KMS . . . . . . . . . . . . . . . . . . . . . . .
11.10 Sequence of thermal/optical events . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.11 Dose response of TL (RlumModel package) . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.12 Effect of burial temperature on TL of quartz (RlumModel) . . . . . . . . . . .

12.1 The nearest neighbor distribution at geological times . . . . . . . . . . . . . . . . .
12.2 Anomalous fading at geological and laboratory times . . . . . . . . . . . . . . . . .
12.3 Feldspar irradiation in nature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.4 Feldspar irradiation in nature—dose response . . . . . . . . . . . . . . . . . . . . . .
12.5 Simulation of CW-IRSL signal from freshly irradiated feldspars . . . .
12.6 Simulation of TL signal from freshly irradiated feldspars . . . . . . . . . . . .
12.7 TL from thermally/optically pretreated feldspar samples . . . . . . . . . . . . .
12.8 Dose response of feldspar in the TA-EST model of Brown et al. . . . . . . . .
12.9 Irradiations at various steady-state temperatures (TA-EST model) . . . . . .

Closed